scholarly journals Organobeidellites for Removal of Anti-Inflammatory Drugs from Aqueous Solutions

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3102
Author(s):  
Eva Plevová ◽  
Silvie Vallová ◽  
Lenka Vaculíková ◽  
Marianna Hundáková ◽  
Roman Gabor ◽  
...  

Diclofenac (DC) and ibuprofen (IBU) are widely prescribed non-steroidal anti-inflammatory drugs, the consumption of which has rapidly increased in recent years. The biodegradability of pharmaceuticals is negligible and their removal efficiency by wastewater treatment is very low. Therefore, the beidelitte (BEI) as unique nanomaterial was modified by the following different surfactants: cetylpyridinium (CP), benzalkonium (BA) and tetradecyltrimethylammonium (TD) bromides. Organobeidellites were tested as potential nanosorbents for analgesics. The organobeidellites were characterized using X-ray powder diffraction (XRD), Infrared spectroscopy (IR), Thermogravimetry and differential thermal analysis (TG/DTA) and scanning microscopy (SEM). The equilibrium concentrations of analgesics in solution were determined using UV-VIS spectroscopy. The intercalation of surfactants into BEI structure was confirmed both using XRD analysis due to an increase in basal spacing from 1.53 to 2.01 nm for BEI_BA and IR by decreasing in the intensities of bands related to the adsorbed water. SEM proved successful in the uploading of surfactants by a rougher and eroded organobeidellite surface. TG/DTA evaluated the decrease in dehydration/dehydroxylation temperatures due to higher hydrophobicity. The Sorption experiments demonstrated a sufficient sorption ability for IBU (55–86%) and an excellent ability for DC (over 90%). The maximum adsorption capacity was found for BEI_BA-DC (49.02 mg·g−1). The adsorption according to surfactant type follows the order BEI_BA > BEI_TD > BEI_CP.

Author(s):  
Farah Wahida Harun ◽  
Siti Balkis Mahamat Nor ◽  
Siti Salhah Othman

This study was carried out to immobilize molybdenyl (VI) acetylacetonate (MoO2(acac)2) complex on alumina pillared montmorillonite K-10 (MMT K-10). Pillar MMT K-10 was produced by introducing MMT K-10 with a hydrolysis solution of NaOH with AlCl3. Different concentrations of pillaring solution were prepared in terms of OHto Al3+ ratio (0.5, 1.0, 1.5 and 2.0) to observe the structural characteristics of MMT K-10. The pillared materials were then immobilized with 0.1 M MoO2(acac)2 and were characterized using X-ray diffractometry (XRD), scanning electron microscopy coupled in an energy dispersive X-ray spectrometer (SEM-EDX) and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) techniques. FTIR bands at ca. 890 – 930 cm-1 indicate that the Mo complex was immobilized on the surface of pillared MMT K-10 not in between the layers. This is supported by the SEM and XRD analysis where the SEM micrograph showed deposition of Mo on the surface of MMT K-10 as well as no modification of basal spacing was observed by XRD. Meanwhile, the d(001) spacing of the alumina pillared MMT K10 samples were seen to increase slightly as the concentration of OH/Al3+ increased.


2021 ◽  
Author(s):  
Vanaraj sekar

Abstract A simple and eco-friendly method for the green synthesis of silver nanoparticles (AgNPs) by ultrasound-assisted strategy using Barleria buxifolia leaf extract as a reducing and capping agent was established in this study. The obtained AgNPs were characterized. UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), Energy Dispersive X-Ray Analyzer (EDX), X-ray diffraction, dynamic light scattering (DLS) analysis showed that the obtained AgNPs were mono dispersed spheres with uniform size of 80 nm. UV-vis spectroscopy, FTIR, and XRD analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. The results of ABTS assays showed that high antioxidant activity was seen in the obtained AgNPs. Green synthesized AgNPs showed potent antibacterial and anti-biofilm activity against tested pathogens. Cytotoxicity assay showed that the obtained AgNPs were significantly cytotoxic to cancer cell line (MCF-7). In addition, the AgNPs synthesized in this paper can also photo catalytically degrade methylene blue dye under visible light. The potent bioactivity exhibited by the green synthesized silver nanoparticles leads towards the multiple use as antioxidant, antibacterial, anti-biofilm, cytotoxic as well as photo catalytic agent.


Author(s):  
Emna Gnenna ◽  
Naoufel Khemiri ◽  
Minghua Kong ◽  
Maria Isabel Alonso ◽  
Mounir Kanzari

Sb2S3 powder was successfully synthesized by solid state reaction technique using high-purity elemental antimony and sulfur. Sb2S3 thin films were deposited on unheated glass substrates by one step thermal evaporation and annealed under vacuum atmosphere for 2 hours at different temperatures 150, 200 and 250 °C. Different characterization techniques were used to better understand the behavior of the Sb2S3 material. X-ray diffraction (XRD) and Raman spectroscopy confirmed the formation of pure Sb2S3 powder with lattice parameters a = 11.07 Å, b = 11.08 Å and c = 3.81 Å. The effect of vacuum annealing temperature on the properties of the films was studied. XRD analysis revealed that as-deposited and annealed films at 150ºC were amorphous in nature whereas those annealed at T ≥ 200°C were polycrystalline with a preferred orientation along (201) plane. The crystallite size of the polycrystalline films showed a decrease from 75.8 to 62.9 nm with the increase of the annealing temperature from 200 to 250 °C. The Raman analysis showed several peaks corresponding to the stibnite Sb2S3 phase. The surface morphology of the films was examined by atomic force microscopy (AFM). The surface roughness decreases slightly as the transformation from the amorphous to the crystalline phase occurs. The chemical compositions of Sb2S3 films were analyzed by energy dispersive X-ray spectroscopy (EDS), revealing that all films were Sb-rich. The optical parameters were estimated from the transmittance and reflectance spectra recorded by UV-Vis spectroscopy. A reduction in the direct band gap energy from 2.12 to 1.70 eV with the increase of annealing temperature was also found.


2016 ◽  
Vol 6 (4) ◽  
pp. 544-552 ◽  
Author(s):  
H. Godini ◽  
F. Hashemi ◽  
L. Mansuri ◽  
M. Sardar ◽  
Ghasem Hassani ◽  
...  

The present paper aims to investigate water purification of phenol by walnut green hull adsorbent. The surface characteristics of the adsorbent were studied using Fourier transform infra-red (FTIR), scanning electron microscope, and X-ray diffraction (XRD) techniques. The presence of functional groups such as hydroxyl and carbonyl onto walnut green hull surface was proved by FTIR analysis. Also quartz, cellulose and hematite were detected in the XRD analysis of samples by an X-ray diffractometer. The maximum sorption was achieved at pH 4.0. Data were evaluated for compliance with the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The results indicate that the data for adsorption of phenol onto walnut green hull fitted well with the Langmuir isotherm. The maximum adsorption capacity of the adsorbent was achieved by Langmuir isotherm 17.8 mg g–1. Also, the adsorption kinetics of phenol on the adsorbent were studied. The rates of sorption were found to conform to pseudo-second-order kinetics with good correlation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
America R. Vazquez-Olmos ◽  
Mohamed Abatal ◽  
Roberto Y. Sato-Berru ◽  
G. K. Pedraza-Basulto ◽  
Valentin Garcia-Vazquez ◽  
...  

Adsorption of Pb(II) from aqueous solution using MFe2O4 nanoferrites (M = Co, Ni, and Zn) was studied. Nanoferrite samples were prepared via the mechanochemical method and were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-Raman, and vibrating sample magnetometry (VSM). XRD analysis confirms the formation of pure single phases of cubic ferrites with average crystallite sizes of 23.8, 19.4, and 19.2 nm for CoFe2O4, NiFe2O4, and ZnFe2O4, respectively. Only NiFe2O4 and ZnFe2O4 samples show superparamagnetic behavior at room temperature, whereas CoFe2O4 is ferromagnetic. Kinetics and isotherm adsorption studies for adsorption of Pb(II) were carried out. A pseudo-second-order kinetic describes the sorption behavior. The experimental data of the isotherms were well fitted to the Langmuir isotherm model. The maximum adsorption capacity of Pb(II) on the nanoferrites was found to be 20.58, 17.76, and 9.34 mg·g−1 for M = Co, Ni, and Zn, respectively.


2020 ◽  
Vol 8 (1) ◽  
pp. 57-65
Author(s):  
Vita Wonoputri ◽  
Natasha Emanuella ◽  
Evelyn Angelica ◽  
Johnner Sitompul

In this study, bentonite was used as a filler in the synthesis of polylactic acid (PLA) nanocomposite. The mechanical property of PLA-Bentonite nanocomposite was treated using two different surfactants, namely octadecyl amine (ODA) and trimethyl stearyl ammonium chloride (TSC) at two different concentration (20 mmol and 40 mmol). The treatments of ODA and TSC in the matrix with regards to the basal spacing of bentonite stacks  measured by X-Ray Diffraction (XRD) analysis. The results showed a significant increase in basal spacing was obtained when TSC 40 was applied for treatment. Data of Fourier Transform Infrared Spectroscopy (FTIR) suggested that this increase was caused by the incorporation of surfactant into the bentonite stacks. Most of the PLA-Bentonite nanocomposite can form intercalation structure, while a sample containing TSC 40 formed exfoliation structure. This exfoliation structure resulted in a film with the best tensile strength and water vapor permeability compared to the others. The film containing TSC 40 showed the lowest reduction in water activity, almost similar to the bread sample wrapped using conventional plastic. The bread wrapped with TSC 40 film was not grown by fungi as opposed to the conventional plastic, showing the potential of the nanocomposite film as food packaging.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Amal Touina ◽  
Safia Chernai ◽  
Bouhameur Mansour ◽  
Hafida Hadjar ◽  
Abdelkader Ouakouak ◽  
...  

AbstractA series of naturally occurring diatomaceous earth samples from Ouled Djilali, Mostaganem (Lower Chelif basin, Algeria northwestern), were investigated, which are characterized by the expansion and evolution during the Messinian age. Four varieties of diatomite were distinguished, characterized, and successfully used to adsorb methylene blue dye in aqueous medium. Several properties and characteristics of diatomite have been outlined using analytical methods such as X-ray fluorescence spectrometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption–desorption (BET), and scanning electron microscopy (SEM), as well as other complementary analysis tests. Results showed that silica and calcium carbonates were the main constituents of the diatomite samples (ranging between 32.8 and 61.5% for SiO2; and 13.8–25.9% for CaO), with a slight difference in chemical composition between selected samples. Typical for all diatomite samples, the XRD analysis suggests a high mass quantity of amorphous phase (Opal); high content of crystal phase was also registered. FTIR allowed determining the basic characteristic silica bands regarding diatomite samples. While the BET and SEM investigations revealed that the studied diatomite material has a highly porous structure and was very rich in diatoms. The maximum adsorption capacity of methylene blue that was calculated from the Langmuir isotherm model was 116.59 mg/g (for Ouled Djilali: OD05 sample) at 25 °C and pH 7.0. The diatomite from Mostaganemian (Ouled Djilali) deposit may find promising applications as low-cost adsorbent for dyes removal from water.


2017 ◽  
Vol 14 (2) ◽  
pp. 146-152
Author(s):  
Neha Sharma ◽  
Sanjayay Kumar

In present study, undoped ZnO, Zn0.8Ag0.2O, Zn0.8Al0.2O and Zn0.6Al0.2Ag0.2O samples are synthesized by simple solution method. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX) and UV-visible (UV-Vis) spectroscopy are used to perform the characterization of undoped, doped and codoped samples. XRD analysis is exposed that hexagonal wurtzite crystalline structure obtained for undoped, doped and codoped samples without any extra representation of impurity phases. The crystalline size is when evaluated by using Scherrer, It has 44, 49, 41and 37nm for undoped ZnO, Zn0.8Ag0.2O, Zn0.8Al0.2O and Zn0.6Al0.2Ag0.2O samples. Similarly, the crystalline size and strain are also evaluated by Williamson hall (W-H) and size strain plot (SSP) for the undoped, doped and codoped nanoparticles. The evaluated crystalline size by SSP is three times greater than the result of the scherrer method. The SEM exposes that surface morphology of nanoparticle samples, in this case is the formation of large agglomeration in spherical shape with nanocrystallites of undoped and doped ZnO with apparent and definite boundaries. EDX points out the replacement of Al2+ and Ag+ with Zn2+ in ZnO matrix and consequences in the development of single-phase Zn1−x−yAgxAlyO. The blueshift is shown in UV-Vis absorption spectra because the band gap value increases with the increase in doping, except Ag+ doped ZnO nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document