scholarly journals Nanoparticle Systems for Cancer Phototherapy: An Overview

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3132
Author(s):  
Thais P. Pivetta ◽  
Caroline E. A. Botteon ◽  
Paulo A. Ribeiro ◽  
Priscyla D. Marcato ◽  
Maria Raposo

Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces’ functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.

Author(s):  
Heidi Abrahamse ◽  
Hanieh Montaseri ◽  
Cherie Kruger

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.


2020 ◽  
Vol 21 (9) ◽  
pp. 3358 ◽  
Author(s):  
Hanieh Montaseri ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1345
Author(s):  
Sherif Ashraf Fahmy ◽  
Hassan Mohamed El-Said Azzazy ◽  
Jens Schaefer

Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong-Mei Xing ◽  
Bing Li ◽  
Xu Zeng ◽  
Li-Si Zhou ◽  
Tae-Soo Lee ◽  
...  

AbstractPolyporus umbellatus is a precious medicinal fungus. Oxalic acid was observed to affect sclerotial formation and sclerotia possessed more medicinal compounds than mycelia. In this study, the transcriptome of P. umbellatus was analysed after the fungus was exposed to various concentrations of oxalic acid. The differentially expressed genes (DEGs) encoding a series of oxidases were upregulated, and reductases were downregulated, in the low-oxalic-acid (Low OA) group compared to the control (No OA) group, while the opposite phenomenon was observed in the high-oxalic-acid (High OA) group. The detection of reactive oxygen species (ROS) in P. umbellatus mycelia was performed visually, and Ca2+ and H2O2 fluxes were measured using non-invasive micro-test technology (NMT). The sclerotial biomass in the Low OA group increased by 66%, however, no sclerotia formed in the High OA group. The ROS fluorescence intensity increased significantly in the Low OA group but decreased considerably in the High OA group. Ca2+ and H2O2 influx significantly increased in the Low OA group, while H2O2 exhibited efflux in the High OA group. A higher level of oxidative stress formed in the Low OA group. Different concentrations of oxalic acid were determined to affect P. umbellatus sclerotial formation in different ways.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Bashir Ahmad Dar

The search for non-invasive or minimally invasive approaches for the treatment of cancer has led to the development of different therapeutic regimes and one such regime is photodynamic therapy (PDT). PDT is a non-thermal treatment based on the synergy of three elements: the administration of a photosensitizer drug; light at a precise wavelength; and the presence of oxygen. When these three components are combined, they lead to the formation of reactive oxygen species (ROS), resulting in a complex cascade of events and subsequent cell death Studies revealed that PDT can prolong survival in patients with inoperable cancers and significantly improve the quality of life. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream strategy for cancer treatment. In this review, we have addressed the most important biological and physicochemical aspects of PDT, summarized its clinical status and provided an outlook for its potential future development. We also discussed the factors that hamper the exploration of this effective therapy and what should be changed to render it a more effective and more widely available option for patients.


2004 ◽  
Vol 279 (44) ◽  
pp. 45713-45720 ◽  
Author(s):  
Vicki Plaks ◽  
Yehudit Posen ◽  
Ohad Mazor ◽  
Alex Brandis ◽  
Avigdor Scherz ◽  
...  

Various forms of cellular stress induce adaptive responses through poorly understood mechanisms. In maintaining homeostasis, endothelial cells respond and adapt to changes in oxidative stress that prevail in the circulation. Endothelial cells are also the target of many oxidative stress-based vascular therapies. The objectives of this study were to determine whether endothelial cells adapt to oxidative stress induced upon the photosensitization of WST11 (a water-soluble Pd-bacteriochlorophyll derivative being developed as a photodynamic agent) and to study possible cellular mechanisms involved. The hallmark of WST11-based photodynamic therapy is thein situgeneration of cytotoxic reactive oxygen species causing vascular shutdown, hypoxia, and tumor eradication. Here we demonstrated that photodynamic therapy also induces adaptive responses and tolerance following a sublethal preconditioning of endothelial cells with the same (homologous) or different (heterologous) stressor. A link among p38 MAPK activity, expression of hsp70 and hsp27, and homologous adaptation to reactive oxygen species induced by photosensitized WST11 was established. In addition to characterization of some key proteins involved, our observations provide a beneficial new working tool for the studies of mechanisms involved in oxidative stress and adaptation using light-controlled photosensitization.


2017 ◽  
Vol 5 (33) ◽  
pp. 6752-6761 ◽  
Author(s):  
Qi-chen Zhan ◽  
Xian-qing Shi ◽  
Xiao-hong Yan ◽  
Qian Liu ◽  
Jia-hong Zhou ◽  
...  

Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROSs) to kill cancer cells.


2017 ◽  
Vol 5 (12) ◽  
pp. 2456-2467 ◽  
Author(s):  
Lili Feng ◽  
Fei He ◽  
Yunlu Dai ◽  
Shili Gai ◽  
Chongna Zhong ◽  
...  

Photodynamic therapy (PDT) is a novel technique that has been extensively employed in cancer treatment; it utilizes reactive oxygen species to kill malignant cells.


Author(s):  
Xinxing Liao ◽  
shen jinchao ◽  
Weijun Wu ◽  
Shi Kuang ◽  
Mingwei Lin ◽  
...  

High amounts of gluthathione in tumour cells are able to decrease the effectivness of cancer treatments by capturing the therapeutically necessary reactive oxygen species during the photodynamic therapy (PDT) process....


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Sign in / Sign up

Export Citation Format

Share Document