scholarly journals Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment

2020 ◽  
Vol 21 (9) ◽  
pp. 3358 ◽  
Author(s):  
Hanieh Montaseri ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.

Author(s):  
Heidi Abrahamse ◽  
Hanieh Montaseri ◽  
Cherie Kruger

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3132
Author(s):  
Thais P. Pivetta ◽  
Caroline E. A. Botteon ◽  
Paulo A. Ribeiro ◽  
Priscyla D. Marcato ◽  
Maria Raposo

Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces’ functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.


Author(s):  
Zhaoguo Han ◽  
xianshuang tu ◽  
Lina Qiao ◽  
Yige Sun ◽  
Zibo Li ◽  
...  

Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT) possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor...


Author(s):  
Mei-ping Zhang ◽  
Yun-Hua Liu ◽  
Hong-Bin Zhang

Abstract This chapter clarifies plant breeding and its underlying molecular basis, then reviews the molecular technologies that have been developed thus far for enhanced plant breeding, which are necessary to better understand the applications and perspectives of these molecular technologies for enhanced maize breeding. This chapter updates the recent advances of the molecular technologies for maize grain yield breeding in the past decade and compares these molecular technologies and underlines their perspectives for continued maize yield improvement.


2020 ◽  
Vol 8 (25) ◽  
pp. 5451-5459 ◽  
Author(s):  
Ying Zhou ◽  
Sainan Liu ◽  
Chunling Hu ◽  
Lihan Cai ◽  
Maolin Pang

As traditional cancer treatment methods, photodynamic therapy (PDT) and photothermal therapy (PTT) can eliminate primary tumors, but they cannot inhibit extensive tumor metastasis and local recurrence.


2020 ◽  
Vol 8 (22) ◽  
pp. 4738-4747 ◽  
Author(s):  
Xue Zhang ◽  
Lu An ◽  
Qiwei Tian ◽  
Jiaomin Lin ◽  
Shiping Yang

This review summarizes the recent advances of tumor microenvironment-activated NIR-II agents for tumor diagnosis and treatment, including smart NIR-II fluorescence imaging, photoacoustic imaging, photothermal therapy and photodynamic therapy.


2021 ◽  
Vol 28 ◽  
Author(s):  
Menghua Xiang ◽  
Quanming Zhou ◽  
Zihan Shi ◽  
Xuan Wang ◽  
Mengchu Li ◽  
...  

: Photodynamic Therapy (PDT), as a clinically approved modality for the treatment of various disordered diseases including cancer, has received great advances in recent years. By preferentially accumulating non-toxic Photosensitizers (PSs) in the pathological area, and in situ generation of cytotoxic reactive oxygen species (ROS) under local irradiation by a light source with appropriate wavelength, PDT works in a dual-selective manner. Over the past decades, numerous studies and reviews on PDT mainly focused on activable PSs and the newly emerging PSs in PDT. However, to the best of our knowledge, there are few articles on the systematic introduction of light sources and limited reports about targeted strategies in PDT. This review comprehensively summarizes various light sources applied in PDT together with typical enhanced targeting strategies, and outlines their advantages and disadvantages, respectively. The clinical applications and future perspectives in light sources are also partly presented and discussed.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1435
Author(s):  
Sueli Aparecida de Oliveira ◽  
Roger Borges ◽  
Derval dos Santos Rosa ◽  
Ana Carolina Santos de Souza ◽  
Amedea B. Seabra ◽  
...  

Traditional cancer treatments, such as surgery, radiotherapy, and chemotherapy, are still the most effective clinical practice options. However, these treatments may display moderate to severe side effects caused by their low temporal or spatial resolution. In this sense, photonic nanomedicine therapies have been arising as an alternative to traditional cancer treatments since they display more control of temporal and spatial resolution, thereby yielding fewer side effects. In this work, we reviewed the challenge of current cancer treatments, using the PubMed and Web of Science database, focusing on the advances of three prominent therapies approached by photonic nanomedicine: (i) photothermal therapy; (ii) photodynamic therapy; (iii) photoresponsive drug delivery systems. These photonic nanomedicines act on the cancer cells through different mechanisms, such as hyperthermic effect and delivery of chemotherapeutics and species that cause oxidative stress. Furthermore, we covered the recent advances in materials science applied in photonic nanomedicine, highlighting the main classes of materials used in each therapy, their applications in the context of cancer treatment, as well as their advantages, limitations, and future perspectives. Finally, although some photonic nanomedicines are undergoing clinical trials, their effectiveness in cancer treatment have already been highlighted by pre-clinical studies.


Sign in / Sign up

Export Citation Format

Share Document