scholarly journals Inorganic Nanoparticles for Cancer Treatment

Author(s):  
Heidi Abrahamse ◽  
Hanieh Montaseri ◽  
Cherie Kruger

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.

2020 ◽  
Vol 21 (9) ◽  
pp. 3358 ◽  
Author(s):  
Hanieh Montaseri ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

The application of porphyrins and their derivatives have been investigated extensively over the past years for phototherapy cancer treatment. Phototherapeutic Porphyrins have the ability to generate high levels of reactive oxygen with a low dark toxicity and these properties have made them robust photosensitizing agents. In recent years, Porphyrins have been combined with various nanomaterials in order to improve their bio-distribution. These combinations allow for nanoparticles to enhance photodynamic therapy (PDT) cancer treatment and adding additional nanotheranostics (photothermal therapy—PTT) as well as enhance photodiagnosis (PDD) to the reaction. This review examines various porphyrin-based inorganic nanoparticles developed for phototherapy nanotheranostic cancer treatment over the last three years (2017 to 2020). Furthermore, current challenges in the development and future perspectives of porphyrin-based nanomedicines for cancer treatment are also highlighted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3132
Author(s):  
Thais P. Pivetta ◽  
Caroline E. A. Botteon ◽  
Paulo A. Ribeiro ◽  
Priscyla D. Marcato ◽  
Maria Raposo

Photodynamic therapy (PDT) and photothermal therapy (PTT) are photo-mediated treatments with different mechanisms of action that can be addressed for cancer treatment. Both phototherapies are highly successful and barely or non-invasive types of treatment that have gained attention in the past few years. The death of cancer cells because of the application of these therapies is caused by the formation of reactive oxygen species, that leads to oxidative stress for the case of photodynamic therapy and the generation of heat for the case of photothermal therapies. The advancement of nanotechnology allowed significant benefit to these therapies using nanoparticles, allowing both tuning of the process and an increase of effectiveness. The encapsulation of drugs, development of the most different organic and inorganic nanoparticles as well as the possibility of surfaces’ functionalization are some strategies used to combine phototherapy and nanotechnology, with the aim of an effective treatment with minimal side effects. This article presents an overview on the use of nanostructures in association with phototherapy, in the view of cancer treatment.


Author(s):  
Zhaoguo Han ◽  
xianshuang tu ◽  
Lina Qiao ◽  
Yige Sun ◽  
Zibo Li ◽  
...  

Phototherapy, such as photodynamic therapy (PDT) and photothermal therapy (PTT) possesses unique characteristics of non-invasiveness and minimal side effects in cancer treatment, compared with conventional therapies. However, the ubiquitous tumor...


2020 ◽  
Vol 8 (25) ◽  
pp. 5451-5459 ◽  
Author(s):  
Ying Zhou ◽  
Sainan Liu ◽  
Chunling Hu ◽  
Lihan Cai ◽  
Maolin Pang

As traditional cancer treatment methods, photodynamic therapy (PDT) and photothermal therapy (PTT) can eliminate primary tumors, but they cannot inhibit extensive tumor metastasis and local recurrence.


2021 ◽  
Vol 28 ◽  
Author(s):  
Menghua Xiang ◽  
Quanming Zhou ◽  
Zihan Shi ◽  
Xuan Wang ◽  
Mengchu Li ◽  
...  

: Photodynamic Therapy (PDT), as a clinically approved modality for the treatment of various disordered diseases including cancer, has received great advances in recent years. By preferentially accumulating non-toxic Photosensitizers (PSs) in the pathological area, and in situ generation of cytotoxic reactive oxygen species (ROS) under local irradiation by a light source with appropriate wavelength, PDT works in a dual-selective manner. Over the past decades, numerous studies and reviews on PDT mainly focused on activable PSs and the newly emerging PSs in PDT. However, to the best of our knowledge, there are few articles on the systematic introduction of light sources and limited reports about targeted strategies in PDT. This review comprehensively summarizes various light sources applied in PDT together with typical enhanced targeting strategies, and outlines their advantages and disadvantages, respectively. The clinical applications and future perspectives in light sources are also partly presented and discussed.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1435
Author(s):  
Sueli Aparecida de Oliveira ◽  
Roger Borges ◽  
Derval dos Santos Rosa ◽  
Ana Carolina Santos de Souza ◽  
Amedea B. Seabra ◽  
...  

Traditional cancer treatments, such as surgery, radiotherapy, and chemotherapy, are still the most effective clinical practice options. However, these treatments may display moderate to severe side effects caused by their low temporal or spatial resolution. In this sense, photonic nanomedicine therapies have been arising as an alternative to traditional cancer treatments since they display more control of temporal and spatial resolution, thereby yielding fewer side effects. In this work, we reviewed the challenge of current cancer treatments, using the PubMed and Web of Science database, focusing on the advances of three prominent therapies approached by photonic nanomedicine: (i) photothermal therapy; (ii) photodynamic therapy; (iii) photoresponsive drug delivery systems. These photonic nanomedicines act on the cancer cells through different mechanisms, such as hyperthermic effect and delivery of chemotherapeutics and species that cause oxidative stress. Furthermore, we covered the recent advances in materials science applied in photonic nanomedicine, highlighting the main classes of materials used in each therapy, their applications in the context of cancer treatment, as well as their advantages, limitations, and future perspectives. Finally, although some photonic nanomedicines are undergoing clinical trials, their effectiveness in cancer treatment have already been highlighted by pre-clinical studies.


2017 ◽  
Vol 5 (33) ◽  
pp. 6752-6761 ◽  
Author(s):  
Qi-chen Zhan ◽  
Xian-qing Shi ◽  
Xiao-hong Yan ◽  
Qian Liu ◽  
Jia-hong Zhou ◽  
...  

Photodynamic therapy (PDT) has been applied in cancer treatment by utilizing reactive oxygen species (ROSs) to kill cancer cells.


2017 ◽  
Vol 5 (12) ◽  
pp. 2456-2467 ◽  
Author(s):  
Lili Feng ◽  
Fei He ◽  
Yunlu Dai ◽  
Shili Gai ◽  
Chongna Zhong ◽  
...  

Photodynamic therapy (PDT) is a novel technique that has been extensively employed in cancer treatment; it utilizes reactive oxygen species to kill malignant cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 296 ◽  
Author(s):  
Hanieh Montaseri ◽  
Cherie Ann Kruger ◽  
Heidi Abrahamse

Photodynamic therapy (PDT) is an alternative modality to conventional cancer treatment, whereby a specific wavelength of light is applied to a targeted tumor, which has either a photosensitizer or photochemotherapeutic agent localized within it. This light activates the photosensitizer in the presence of molecular oxygen to produce phototoxic species, which in turn obliterate cancer cells. The incidence rate of breast cancer (BC) is regularly growing among women, which are currently being treated with methods, such as chemotherapy, radiotherapy, and surgery. These conventional treatment methods are invasive and often produce unwanted side effects, whereas PDT is more specific and localized method of cancer treatment. The utilization of nanoparticles in PDT has shown great advantages compared to free photosensitizers in terms of solubility, early degradation, and biodistribution, as well as far more effective intercellular penetration and uptake in targeted cancer cells. This review gives an overview of the use of inorganic nanoparticles (NPs), including: gold, magnetic, carbon-based, ceramic, and up-conversion NPs, as well as quantum dots in PDT over the last 10 years (2009 to 2019), with a particular focus on the active targeting strategies for the PDT treatment of BC.


Sign in / Sign up

Export Citation Format

Share Document