scholarly journals Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition

2018 ◽  
Vol 4 (2) ◽  
pp. 14 ◽  
Author(s):  
Almudena Expósito-Villén ◽  
Amelia E. Aránega ◽  
Diego Franco
Gut ◽  
2018 ◽  
Vol 68 (3) ◽  
pp. 547-561 ◽  
Author(s):  
Mirjam B Zeisel ◽  
Punita Dhawan ◽  
Thomas F Baumert

Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV—one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.


2021 ◽  
Vol 7 (2) ◽  
pp. 35
Author(s):  
Pei-Ling Hsieh ◽  
Chun-Chung Huang ◽  
Cheng-Chia Yu

MicroRNAs (miRNAs) are endogenous non-coding RNAs ~22 nucleotides in length, which have been shown to participate in various biological processes. As one of the most researched miRNAs, the miR-200 family has been found to regulate several factors that are associated with the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs) behavior. In this review, we briefly summarize the background of the miR-200 family and their implication in various dental diseases. We focus on the expression changes, biological functions, and clinical significance of the miR-200 family in oral cancer; periodontitis; oral potentially malignant disorder; gingival overgrowth; and other periodontal diseases. Additionally, we discuss the use of the miR-200 family as molecular biomarkers for diagnosis, prognostic, and therapeutic application.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Shangwen Xiao ◽  
Bin Song

Abstract Long non-coding RNAs (lncRNAs) act as crucial modulators during the development of diverse cancers. Although various types of lncRNAs in prostate cancer (PCa) have been explored, quantities of lncRNAs still wait to be exploited. The present study is to probe the functions and mechanism of lncRNA HOXA cluster antisense RNA 2 (HOXA-AS2) in PCa. In the present study, we discovered that HOXA-AS2 was highly expressed in PCa tissues and cells. HOXA-AS2 depletion obviously influenced cell proliferation, migration, invasion, as well as epithelial-to-mesenchymal transition (EMT) progression. In addition, miR-509-3p had low expression in PCa cells and inversely modulated by HOXA-AS2. Cutting down HOXA-AS2 expression was capable of up-regulating miR-509-3p expression. In addition, HOXA-AS2 served as a competing endogenous RNA (ceRNA) through sponging miR-509-3p to release pre-B-cell leukemia homeobox 3 (PBX3) expression. The expression of PBX3 was noticeably high in tumor tissues. And PBX3 expression level was down-regulated markedly with the knockdown of HOXA-AS2. Rescue experiments certified the facilitated role of HOXA-AS2-miR-509-3p-PBX3 axis in regulating the progress of PCa. The present study may provide clues for exploration of novel therapeutic targets for PCa patients.


2019 ◽  
Vol 63 (5) ◽  
pp. 579-594 ◽  
Author(s):  
Guillem Lambies ◽  
Antonio García de Herreros ◽  
Víctor M. Díaz

Abstract Cell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Sign in / Sign up

Export Citation Format

Share Document