scholarly journals Gut Microbiota’s Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics

Nutrients ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1457 ◽  
Author(s):  
Xiao Meng ◽  
Sha Li ◽  
Ya Li ◽  
Ren-You Gan ◽  
Hua-Bin Li

A variety of dietary natural products have shown hepatoprotective effects. Increasing evidence has also demonstrated that gut microorganisms play an important role in the hepatoprotection contributed by natural products. Gut dysbiosis could increase permeability of the gut barrier, resulting in translocated bacteria and leaked gut-derived products, which can reach the liver through the portal vein and might lead to increased oxidative stress and inflammation, thereby threatening liver health. Targeting gut microbiota modulation represents a promising strategy for hepatoprotection. Many natural products could protect the liver from various injuries or mitigate hepatic disorders by reverting gut dysbiosis, improving intestinal permeability, altering the primary bile acid, and inhibiting hepatic fatty acid accumulation. The mechanisms underlying their beneficial effects also include reducing oxidative stress, suppressing inflammation, attenuating fibrosis, and decreasing apoptosis. This review discusses the hepatoprotective effects of dietary natural products via modulating the gut microbiota, mainly focusing on the mechanisms of action.

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 612
Author(s):  
Mee Ree Kim

Antioxidant ingredients are known to contribute to the beneficial effects of natural products in health promotion as well as disease prevention by reducing oxidative stress, caused by reactive oxygen or nitrogen species, in biological systems [...]


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 513-520 ◽  
Author(s):  
Sangkyu Kim ◽  
S. Michal Jazwinski

The gut microbiota shows a wide inter-individual variation, but its within-individual variation is relatively stable over time. A functional core microbiome, provided by abundant bacterial taxa, seems to be common to various human hosts regardless of their gender, geographic location, and age. With advancing chronological age, the gut microbiota becomes more diverse and variable. However, when measures of biological age are used with adjustment for chronological age, overall richness decreases, while a certain group of bacteria associated with frailty increases. This highlights the importance of considering biological or functional measures of aging. Studies using model organisms indicate that age-related gut dysbiosis may contribute to unhealthy aging and reduced longevity. The gut microbiome depends on the host nutrient signaling pathways for its beneficial effects on host health and lifespan, and gut dysbiosis disrupting the interdependence may diminish the beneficial effects or even have reverse effects. Gut dysbiosis can trigger the innate immune response and chronic low-grade inflammation, leading to many age-related degenerative pathologies and unhealthy aging. The gut microbiota communicates with the host through various biomolecules, nutrient signaling-independent pathways, and epigenetic mechanisms. Disturbance of these communications by age-related gut dysbiosis can affect the host health and lifespan. This may explain the impact of the gut microbiome on health and aging.


2018 ◽  
Author(s):  
YP Chen ◽  
LL Tan ◽  
DM Chen ◽  
Q Xu ◽  
JP Song ◽  
...  

BackgroundAlthough dietary patterns are recognized to affect health by interfering with gut microbiota homeostasis, whether live or dead bacteria-bearing spring mineral water (MW) would also exert beneficial effects on health upon curing gut dysbiosis remains unknown.ResultsDue to harboring live bacteria, the heated but unboiled MW from Bama, where centenarians are ubiquitously inhabited, reshapes the gut microbiota from a traveler-type to a local resident-type except for Prevotella. While chondroitin sulfate, a component occurring in livestock and poultry meats, increases the richness of sulfatase-secreting bacteria and sulfate-reducing bacteria, Bama MW dampens the overgrowth of those colon-thinning bacteria and hampers the overexpression of multiple genes responsible for anti-inflammation, anti-oxidation, anti-hypoxia, anti-mutagenesis, and anti-tumorigenesis.ConclusionsBama spring MW prevents the early-phase onset of breast cancer by curating gut dysbiosis. MW also compromises chromosomal DNA damage and ameliorate mitochondrial dysfunctions, implying it may extend lifespan.


2021 ◽  
Author(s):  
Xin Yan ◽  
Yu Wang ◽  
Xue-Yang Ren ◽  
Xiao-Yun Liu ◽  
Jia-Mu Ma ◽  
...  

Gut microbiota dysbiosis correction contributes to the hepatoprotective effects of Thymus quinquecostatus Celak extract (TQE) against alcoholic liver injury through gut–liver axis modulation.


2018 ◽  
Vol 24 (27) ◽  
pp. 3162-3171 ◽  
Author(s):  
Rohini Krishna Kota ◽  
Ranga Rao Ambati ◽  
Aswani Kumar Y.V.V. ◽  
Krupanidhi Srirama ◽  
Prakash Narayana Reddy

Background: Gastrointestinal (GI) diseases are a major cause of emergency department visits requiring hospitalizations leading to considerable burden on global economy. Several factors contribute to the onset of gastrointestinal diseases such as pathogens (parasites, bacteria, virus, toxins etc.), autoimmune disorders and severe inflammation of intestine. Objective: One common feature among all these diseases is the dysentery and alteration of gut microbiota composition (gut dysbiosis). Apart from conventional therapies such as antibiotics and ORS supplementation, gut microbiota modulation with probiotic supplementation has emerged as a successful and healthy alternative in mitigating GI diseases. In this review our goal is to discuss the causes of gastrointestinal diseases and the present state of various therapeutic strategies such as probiotics as live biotherapeutics and Fecal Microbial Transplants (FMT’s). Conclusion: Several reports and clinical trials point out to the beneficial effects of probiotics in modulating the gut microbiota and improving the side effects of gastrointestinal diseases. Live biotherapeutics and FMT’s could be suitable and successful alternatives to conventional therapies in mitigating the gastrointestinal pathogens.


Author(s):  
Huanan Shi ◽  
Bojun Zhang ◽  
Taylor Abo-Hamzy ◽  
James W Nelson ◽  
Chandra Shekar R Ambati ◽  
...  

Raionale: : In recent years, it has been demonstrated that a pathological change in the gut microbiota, termed gut dysbiosis, can be an underlying factor for the development of hypertension. Prevention of this dysbiosis can attenuate or abolish hypertension. Translational mechanisms to prevent gut dysbiosis as well as understanding of the mechanisms linking gut dysbiosis to hypertension are lacking. Objective: We first examined the efficacy of intermittent fasting (IF) in altering the gut microbiota and lowering blood pressure (BP). Next, we utilized a multi-omics approach to examine microbial influenced metabolites that may serve as the link between the gut microbiota and host BP regulation. Methods and Results: We demonstrate that IF significantly altered the makeup of the gut microbiota, cecal and plasma metabolome, and prevented the development of hypertension in the spontaneously hypertensive stroke-prone rat (SHRSP). The beneficial effects of IF were shown to be due to alterations of the gut microbiota through germ-free (GF) transplantation studies. GF rats receiving microbiota from IF SHRSP had significantly lower BP as compared to GF rats receiving microbiota from ad libitum fed SHRSPs. Through whole genome shotgun sequence analysis of the microbiota and untargeted metabolomics of cecal content and plasma we identified bile acid (BA) metabolism as a potential mediator in BP regulation. Finally, we show supplementation with cholic acid, or activation of the G protein-coupled BA receptor (TGR5), significantly reduced BP of the SHRSP. Conclusions: These studies demonstrate the BP lowering effects of IF involves manipulation of the gut microbiota and metabolome, and implicates disrupted BA signaling as novel mechanisms by which gut dysbiosis contributes to hypertension.


Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 21 ◽  
Author(s):  
Nima Jazani ◽  
Javad Savoj ◽  
Michael Lustgarten ◽  
Wei Lau ◽  
Nosratola Vaziri

Chronic kidney disease (CKD) is a worldwide major health problem. Traditional risk factors for CKD are hypertension, obesity, and diabetes mellitus. Recent studies have identified gut dysbiosis as a novel risk factor for the progression CKD and its complications. Dysbiosis can worsen systemic inflammation, which plays an important role in the progression of CKD and its complications such as cardiovascular diseases. In this review, we discuss the beneficial effects of the normal gut microbiota, and then elaborate on how alterations in the biochemical environment of the gastrointestinal tract in CKD can affect gut microbiota. External factors such as dietary restrictions, medications, and dialysis further promote dysbiosis. We discuss the impact of an altered gut microbiota on neuroendocrine pathways such as the hypothalamus–pituitary–adrenal axis, the production of neurotransmitters and neuroactive compounds, tryptophan metabolism, and the cholinergic anti-inflammatory pathway. Finally, therapeutic strategies including diet modification, intestinal alpha-glucosidase inhibitors, prebiotics, probiotics and synbiotics are reviewed.


Antioxidants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 229 ◽  
Author(s):  
Laura Inés Elvira-Torales ◽  
Javier García-Alonso ◽  
María Jesús Periago-Castón

The consumption of carotenoids has beneficial effects on health, reducing the risk of certain forms of cancer, cardiovascular diseases, and macular degeneration, among others. The mechanism of action of carotenoids has not been clearly identified; however, it has been associated with the antioxidant capacity of carotenoids, which acts against reactive oxygen species and inactivating free radicals, although it has also been shown that carotenoids modulate gene expression. Dietary carotenoids are absorbed and accumulated in the liver and other organs, where they exert their beneficial effects. In recent years, it has been described that the intake of carotenoids can significantly reduce the risk of suffering from liver diseases, such as non-alcoholic fatty liver disease (NAFLD). This disease is characterized by an imbalance in lipid metabolism producing the accumulation of fat in the hepatocyte, leading to lipoperoxidation, followed by oxidative stress and inflammation. In the first phases, the main treatment of NAFLD is to change the lifestyle, including dietary habits. In this sense, carotenoids have been shown to have a hepatoprotective effect due to their ability to reduce oxidative stress and regulate the lipid metabolism of hepatocytes by modulating certain genes. The objective of this review was to provide a description of the effects of dietary carotenoids from fruits and vegetables on liver health.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 708
Author(s):  
Andrea Deledda ◽  
Giuseppe Annunziata ◽  
Gian Carlo Tenore ◽  
Vanessa Palmas ◽  
Aldo Manzin ◽  
...  

It is generally accepted that gut microbiota, inflammation and obesity are linked to the development of cardiovascular diseases and other chronic/non-communicable pathological conditions, including cancer, neurodegenerative diseases and ageing-related disorders. In this scenario, oxidative stress plays a pivotal role. Evidence suggests that the global dietary patterns may represent a tool in counteracting oxidative stress, thus preventing the onset of diseases related to oxidative stress. More specifically, dietary patterns based on the regular consumption of fruits and vegetables (i.e., Mediterranean diet) have been licensed by various national nutritional guidelines in many countries for their health-promoting effects. Such patterns, indeed, result in being rich in specific components, such as fiber, minerals, vitamins and antioxidants, whose beneficial effects on human health have been widely reported. This suggests a potential nutraceutical power of specific dietary components. In this manuscript, we summarize the most relevant evidence reporting the impact of dietary antioxidants on gut microbiota composition, inflammation and obesity, and we underline that antioxidants are implicated in a complex interplay between gut microbiota, inflammation and obesity, thus suggesting their possible role in the development and modulation of chronic diseases related to oxidative stress and in the maintenance of wellness. Do all roads lead to Rome?


Sign in / Sign up

Export Citation Format

Share Document