scholarly journals The Zinc-Metallothionein Redox System Reduces Oxidative Stress in Retinal Pigment Epithelial Cells

Nutrients ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1874 ◽  
Author(s):  
Sara Rodríguez-Menéndez ◽  
Montserrat García ◽  
Beatriz Fernández ◽  
Lydia Álvarez ◽  
Andrés Fernández-Vega-Cueto ◽  
...  

Oxidative stress affects all the structures of the human eye, particularly the retina and its retinal pigment epithelium (RPE). The RPE limits oxidative damage by several protective mechanisms, including the non-enzymatic antioxidant system zinc-metallothionein (Zn-MT). This work aimed to investigate the role of Zn-MT in the protection of RPE from the oxidative damage of reactive oxygen intermediates by analytical and biochemical-based techniques. The Zn-MT system was induced in an in vitro model of RPE cells and determined by elemental mass spectrometry with enriched isotopes and mathematical calculations. Induced-oxidative stress was quantified using fluorescent probes. We observed that 25, 50 or 100 μM of zinc induced Zn-MT synthesis (1.6-, 3.6- and 11.9-fold, respectively), while pre-treated cells with zinc (25, 50, and 100 μM) and subsequent 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (AAPH) treatment increased Zn-MT levels in a lesser extent (0.8-, 2.1-, 6.1-fold, respectively), exerting a stoichiometric transition in the Zn-MT complex. Moreover, AAPH treatment decreased MT levels (0.4-fold), while the stoichiometry remained constant or slightly higher when compared to non-treated cells. Convincingly, induction of Zn-MT significantly attenuated oxidative stress produced by free radicals’ generators. We conclude that the stoichiometry of Zn-MT plays an important role in oxidative stress response, related with cellular metal homeostasis.

2008 ◽  
Vol 86 (4) ◽  
pp. 661-668 ◽  
Author(s):  
Karin Kobuch ◽  
Wolfgang A. Herrmann ◽  
Carsten Framme ◽  
Helmut G. Sachs ◽  
Veit-Peter Gabel ◽  
...  

2017 ◽  
Vol 117 (04) ◽  
pp. 750-757
Author(s):  
Xin Jia ◽  
Chen Zhao ◽  
Qishan Chen ◽  
Yuxiang Du ◽  
Lijuan Huang ◽  
...  

SummaryJunctional adhesion molecule-C (JAM-C) has been shown to play critical roles during development and in immune responses. However, its role in adult eyes under oxidative stress remains poorly understood. Here, we report that JAM-C is abundantly expressed in adult mouse retinae and choroids in vivo and in cultured retinal pigment epithelium (RPE) and photoreceptor cells in vitro. Importantly, both JAM-C expression and its membrane localisation are downregulated by H2O2-induced oxidative stress. Under H2O2-induced oxidative stress, JAM-C is critically required for the survival of human RPE cells. Indeed, loss of JAM-C by siRNA knockdown decreased RPE cell survival. Mechanistically, we show that JAM-C is required to maintain VEGFR2 expression in RPE cells, and VEGFR2 plays an important role in keeping the RPE cells viable since overexpression of VEGFR2 partially restored impaired RPE survival caused by JAM-C knockdown and increased RPE survival. We further show that JAM-C regulates VEGFR2 expression and, in turn, modulates p38 phosphorylation. Together, our data demonstrate that JAM-C plays an important role in maintaining VEGR2 expression to promote RPE cell survival under oxidative stress. Given the vital importance of RPE in the eye, approaches that can modulate JAM-C expression may have therapeutic values in treating diseases with impaired RPE survival.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Maria L. Alonso-Alonso ◽  
Girish K. Srivastava ◽  
Ricardo Usategui-Martín ◽  
Maria T. García-Gutierrez ◽  
José Carlos Pastor ◽  
...  

Mesenchymal stem cells (MSC) secrete neuroprotective molecules that may be useful as an alternative to cell transplantation itself. Our purpose was to develop different pharmaceutical compositions based on conditioned medium (CM) of adipose MSC (aMSC) stimulated by and/or combined with nicotinamide (NIC), vasoactive intestinal peptide (VIP), or both factors; and to evaluate in vitro their proliferative and neuroprotective potential. Nine pharmaceutical compositions were developed from 3 experimental approaches: (1) unstimulated aMSC-CM collected and combined with NIC, VIP, or both factors (NIC+VIP), referred to as the aMSC-CM combined composition; (2) aMSC-CM collected just after stimulation with the mentioned factors and containing them, referred to as the aMSC-CM stimulated-combined composition; and (3) aMSC-CM previously stimulated with the factors, referred to as the aMSC stimulated composition. The potential of the pharmaceutical compositions to increase cell proliferation under oxidative stress and neuroprotection were evaluated in vitro by using a subacute oxidative stress model of retinal pigment epithelium cells (line ARPE-19) and spontaneous degenerative neuroretina model. Results showed that oxidatively stressed ARPE-19 cells exposed to aMSC-CM stimulated and stimulated-combined with NIC or NIC+VIP tended to have better recovery from the oxidative stress status. Neuroretinal explants cultured with aMSC-CM stimulated-combined with NIC+VIP had better preservation of the neuroretinal morphology, mainly photoreceptors, and a lower degree of glial cell activation. In conclusion, aMSC-CM stimulated-combined with NIC+VIP contributed to improving the proliferative and neuroprotective properties of the aMSC secretome. Further studies are necessary to evaluate higher concentrations of the drugs and to characterize specifically the aMSC-secreted factors related to neuroprotection. However, this study supports the possibility of improving the potential of new effective pharmaceutical compositions based on the secretome of MSC plus exogenous factors or drugs without the need to inject cells into the eye, which can be very useful in retinal pathologies.


2015 ◽  
Vol 36 (6) ◽  
pp. 2217-2228 ◽  
Author(s):  
Xu Zha ◽  
Guojiu Wu ◽  
Xueying Zhao ◽  
Liqiong Zhou ◽  
Hong Zhang ◽  
...  

Background/Aims: Oxidative stress that damages cells of the retinal pigment epithelium (RPE) can cause the development of hereditary retinal disease (HRD). PRDX6, which is a member of the PRDX family, is essential for removing metabolic free radicals from the body. However, the effect of PRDX6 on oxidative stress in HRD remains unknown. In this study, we sought to investigate the role of PRDX6 in oxidative stress-induced HRD in ARPE-19 cells and the molecular mechanism involved. Methods: ARPE-19 cells were used in the current study. Intracellular ROS levels were determined by flow cytometry. Lipid peroxidation was measured using a commercial MDA assay kit. Cellular variability was determined by MTT assay. Apoptosis was determined using an Annexin V-FITC Apoptosis Detection Kit. mRNA and protein expression levels were detected by real-time PCR and western blot analysis, respectively. Results: We found that H2O2 and blue light could induce significant oxidative stress damage and cell death in ARPE-19 cells. Furthermore, we found that PRDX6 levels significantly decreased after H2O2 treatment. PRDX6 overexpression protected ARPE-19 cells from H2O2- and blue light-induced oxidative damage, while PRDX6 knockdown enhanced oxidative damage in these cells. Mechanistically, we found that PRDX6 prevented oxidative damage and promoted ARPE-19 cell survival through the PI3K/AKT signaling pathway. Conclusions: Collectively, these results suggest that PRDX6 protects ARPE-19 cells from H2O2-induced oxidative stress and apoptosis and that this protection is mediated at least partially through the PI3K/AKT pathway.


Marine Drugs ◽  
2021 ◽  
Vol 20 (1) ◽  
pp. 15
Author(s):  
Yunjun Liu ◽  
Zixin Guo ◽  
Shengnan Wang ◽  
Yixiang Liu ◽  
Ying Wei

Fucoxanthin, a special xanthophyll derived from marine algae, has increasingly attracted attention due to its diverse biological functions. However, reports on its ocular benefits are still limited. In this work, the ameliorative effect of fucoxanthin on visible light and lipid peroxidation-induced phagocytosis disruption in retinal pigment epithelium (RPE) cells was investigated in vitro. Marked oxidative stress, inflammation, and phagocytosis disruption were evident in differentiated RPE cells following their exposure to visible light under a docosahexaenoic acid (DHA)-rich environment. Following pretreatment with fucoxanthin, however, the activated nuclear factor erythroid-derived-2-like 2 (Nrf2) signaling pathway was observed and, furthermore, when the fucoxanthin -pretreated RPE cells were irradiated with visible light, intracellular reactive oxygen species (ROS), malondialdehyde (MDA) levels and inflammation were obviously suppressed, while phagocytosis was significantly improved. However, following the addition of Nrf2 inhibitor ML385, the fucoxanthin exhibited no ameliorative effects on the oxidative stress, inflammation, and phagocytosis disruption in the RPE cells, thus indicating that the ameliorative effect of fucoxanthin on the phagocytosis of RPE cells is closely related to the Nrf2 signaling pathway. In conclusion, these results suggest that fucoxanthin supplementation might be beneficial to the prevention of visible light-induced retinal injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Samuel Abokyi ◽  
Sze wan Shan ◽  
Chi-ho To ◽  
Henry Ho-lung Chan ◽  
Dennis Yan-yin Tse

Trehalose is a natural dietary molecule that has shown antiaging and neuroprotective effects in several animal models of neurodegenerative diseases. The role of trehalose in the management of age-related macular degeneration (AMD) is yet to be investigated and whether trehalose could be a remedy for the treatment of diseases linked to oxidative stress and NRF2 dysregulation. Here, we showed that incubation of human retinal pigment epithelial (RPE) cells with trehalose enhanced the mRNA and protein expressions of TFEB, autophagy genes ATG5 and ATG7, as well as protein expressions of macroautophagy markers, LC3B and p62/SQTM1, and the chaperone-mediated autophagy (CMA) receptor LAMP2. Cathepsin D, a hydrolytic lysosomal enzyme, was also increased by trehalose, indicating higher proteolytic activity. Moreover, trehalose upregulated autophagy flux evident by an increase in the endogenous LC3B level, and accumulation of GFP-LC3B puncta and free GFP fragments in GFP-LC3 ̶ expressing cells in the presence of chloroquine. In addition, the mRNA levels of key molecular targets implicated in RPE damage and AMD, such as vascular endothelial growth factor- (VEGF-) A and heat shock protein 27 (HSP27), were downregulated, whereas NRF2 was upregulated by trehalose. Subsequently, we mimicked in vitro AMD conditions using hydroquinone (HQ) as the oxidative insult on RPE cells and evaluated the cytoprotective effect of trehalose compared to vehicle treatment. HQ depleted NRF2, increased oxidative stress, and reduced the viability of cells, while trehalose pretreatment protected against HQ-induced toxicity. The cytoprotection by trehalose was dependent on autophagy but not NRF2 activation, since autophagy inhibition by shRNA knockdown of ATG5 led to a loss of the protective effect. The results support the transcriptional upregulation of TFEB and autophagy by trehalose and its protection against HQ-induced oxidative damage in RPE cells. Further investigation is, therefore, warranted into the therapeutic value of trehalose in alleviating AMD and retinal diseases associated with impaired NRF2 antioxidant defense.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 548 ◽  
Author(s):  
Trakkides ◽  
Schäfer ◽  
Reichenthaler ◽  
Kühn ◽  
Brandwijk ◽  
...  

Oxidative stress-induced damage of the retinal pigment epithelium (RPE) and chronic inflammation have been suggested as major contributors to a range of retinal diseases. Here, we examined the effects of oxidative stress on endogenous complement components and proinflammatory and angiogenic responses in RPE cells. ARPE-19 cells exposed for 1–48 h to H2O2 had reduced cell–cell contact and increased markers for epithelial–mesenchymal transition but showed insignificant cell death. Stressed ARPE-19 cells increased the expression of complement receptors CR3 (subunit CD11b) and C5aR1. CD11b was colocalized with cell-derived complement protein C3, which was present in its activated form in ARPE-19 cells. C3, as well as its regulators complement factor H (CFH) and properdin, accumulated in the ARPE-19 cells after oxidative stress independently of external complement sources. This cell-associated complement accumulation was accompanied by increased nlrp3 and foxp3 expression and the subsequently enhanced secretion of proinflammatory and proangiogenic factors. The complement-associated ARPE-19 reaction to oxidative stress, which was independent of exogenous complement sources, was further augmented by the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib. Our results indicate that ARPE-19 cell-derived complement proteins and receptors are involved in ARPE-19 cell homeostasis following oxidative stress and should be considered as targets for treatment development for retinal degeneration.


2022 ◽  
Vol 12 ◽  
Author(s):  
R. Scott Duncan ◽  
Daniel T. Hurtado ◽  
Conner W. Hall ◽  
Peter Koulen

The purpose of this study was to determine if different vitamin E components exhibit similar efficacy and mechanism of action in protecting Retinal pigment epithelium (RPE) cells from oxidative damage. We hypothesized that α-tocopherol (αT) is unique among vitamin E components in its cytoprotective mechanism of action against oxidative stress in RPE cells and that it requires protein synthesis for optimal antioxidant effect. We used cell viability assays, fluorescent chemical labeling of DNA and actin and immuno-labeling of the antioxidant proteins Nrf2 and Sod2 and of the tight junction protein, ZO-1, and confocal microscopy to determine the effects of αT and γT against oxidative stress in immortalized human RPE cells (hTERT-RPE). Using the four main vitamin E components, αT, γT, δ-tocopherol (δT) and α-tocotrienol (αTr), we ascertained that they exhibit similar, but not identical, antioxidant activity as αT when used at equimolar concentrations. In addition, we determined that the exposure time of RPE cells to α-tocopherol is critical for its ability to protect against oxidative damage. Lastly, we determined that αT, but not γT, partially requires the synthesis of new proteins within a 24-h period and prior to exposure to tBHP for optimal cytoprotection. We conclude that, unlike γT and δT, αT appears to be unique in its requirement for transport and/or signaling for it to be an effective antioxidant. As a result, more focus should be paid to which vitamin E components are used for antioxidant interventions.


1996 ◽  
Vol 109 (1) ◽  
pp. 33-43
Author(s):  
C. King-Smith ◽  
P. Chen ◽  
D. Garcia ◽  
H. Rey ◽  
B. Burnside

In the eyes of teleosts and amphibians, melanin pigment granules of the retinal pigment epithelium (RPE) migrate in response to changes in light conditions. In the light, pigment granules disperse into the cells' long apical projections, thereby shielding the rod photoreceptor outer segments and reducing their extent of bleach. In darkness, pigment granules aggregate towards the base of the RPE cells. In vitro, RPE pigment granule aggregation can be induced by application of nonderivatized cAMP, and pigment granule dispersion can be induced by cAMP washout. In previous studies based on RPE-retina co-cultures, extracellular calcium was found to influence pigment granule migration. To examine the role of calcium in regulation of RPE pigment granule migration in the absence of retinal influences, we have used isolated RPE sheets and dissociated, cultured RPE cells. Under these conditions depletion of extracellular or intracellular calcium ([Ca2+]o, [Ca2+]i) had no effect on RPE pigment granule aggregation or dispersion. Using the intracellular calcium dye fura-2 and a new dye, fura-pe3, to monitor calcium dynamics in isolated RPE cells, we found that [Ca2+]i did not change from basal levels when pigment granule aggregation was triggered by cAMP, or dispersion was triggered by cAMP washout. Also, no change in [Ca2+]i was detected when dispersion was triggered by cAMP washout in the presence of 10 microM dopamine, a treatment previously shown to enhance dispersion. In addition, elevation of [Ca2+]i by addition of ionomycin neither triggered pigment movements, nor interfered with pigment granule motility elicited by cAMP addition or washout. Since other studies have indicated that actin plays a role in both pigment granule dispersion and aggregation in RPE, our findings suggest that RPE pigment granule migration depends on an actin-based motility system that is not directly regulated by calcium.


Sign in / Sign up

Export Citation Format

Share Document