scholarly journals Enhancing Omega-3 Long-Chain Polyunsaturated Fatty Acid Content of Dairy-Derived Foods for Human Consumption

Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 743 ◽  
Author(s):  
Quang V. Nguyen ◽  
Bunmi Malau-Aduli ◽  
John Cavalieri ◽  
Aduli E.O. Malau-Aduli ◽  
Peter Nichols

Omega-3 polyunsaturated fatty acids (n-3 PUFA) are termed essential fatty acids because they cannot be synthesized de novo by humans due to the lack of delta-12 and delta-15 desaturase enzymes and must therefore be acquired from the diet. n-3 PUFA include α-linolenic acid (ALA, 18:3n-3), eicosapentaenoic (EPA, 20:5n-3), docosahexaenoic (DHA, 22:6n-3), and the less recognized docosapentaenoic acid (DPA, 22:5n-3). The three long-chain (≥C20) n-3 PUFA (n-3 LC-PUFA), EPA, DHA, and DPA play an important role in human health by reducing the risk of chronic diseases. Up to the present time, seafood, and in particular, fish oil-derived products, have been the richest sources of n-3 LC-PUFA. The human diet generally contains insufficient amounts of these essential FA due largely to the low consumption of seafood. This issue provides opportunities to enrich the content of n-3 PUFA in other common food groups. Milk and milk products have traditionally been a major component of human diets, but are also among some of the poorest sources of n-3 PUFA. Consideration of the high consumption of milk and its processed products worldwide and the human health benefits has led to a large number of studies targeting the enhancement of n-3 PUFA content in dairy products. The main objective of this review was to evaluate the major strategies that have been employed to enhance n-3 PUFA content in dairy products and to unravel potential knowledge gaps for further research on this topic. Nutritional manipulation to date has been the main approach for altering milk fatty acids (FA) in ruminants. However, the main challenge is ruminal biohydrogenation in which dietary PUFA are hydrogenated into monounsaturated FA and/or ultimately, saturated FA, due to rumen microbial activities. The inclusion of oil seed and vegetable oil in dairy animal diets significantly elevates ALA content, while the addition of rumen-protected marine-derived supplements is the most effective way to increase the concentration of EPA, DHA, and DPA in dairy products. In our view, the mechanisms of n-3 LC-PUFA biosynthesis pathway from ALA and the biohydrogenation of individual n-3 LC-PUFA in ruminants need to be better elucidated. Identified knowledge gaps regarding the activities of candidate genes regulating the concentrations of n-3 PUFA and the responses of ruminants to specific lipid supplementation regimes are also critical to a greater understanding of nutrition-genetics interactions driving lipid metabolism.

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1111
Author(s):  
Maria P. Mollica ◽  
Giovanna Trinchese ◽  
Fabiano Cimmino ◽  
Eduardo Penna ◽  
Gina Cavaliere ◽  
...  

Milk contains several important nutrients that are beneficial for human health. This review considers the nutritional qualities of essential fatty acids (FAs), especially omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) present in milk from ruminant and non-ruminant species. In particular, the impact of milk fatty acids on metabolism is discussed, including its effects on the central nervous system. In addition, we presented data indicating how animal feeding—the main way to modify milk fat composition—may have a potential impact on human health, and how rearing and feeding systems strongly affect milk quality within the same animal species. Finally, we have presented the results of in vivo studies aimed at supporting the beneficial effects of milk FA intake in animal models, and the factors limiting their transferability to humans were discussed.


Biology ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 912
Author(s):  
Shedrach Benjamin Pewan ◽  
John Roger Otto ◽  
Robert Tumwesigye Kinobe ◽  
Oyelola Abdulwasiu Adegboye ◽  
Aduli Enoch Othniel Malau-Aduli

The aim of this research was to evaluate the nutritional enhancement of omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) composition of edible lamb Longissimus thoracis et lumborum muscle, heart, kidney, and liver in response to dietary supplementation of lot-fed lambs with or without omega-3 oil fortified pellets. The hypothesis tested was that fortifying feedlot pellets with omega-3 oil will enhance the human health beneficial n-3 LC-PUFA composition of edible lamb muscle tissue and organs. Seventy-five Tattykeel Australian White lambs exclusive to the MARGRA brand, with an average body weight of 30 kg at six months of age, were randomly assigned to the following three dietary treatments of 25 lambs each, and lot-fed as a cohort for 47 days in a completely randomized experimental design: (1) Control grain pellets without oil plus hay; (2) Omega-3 oil fortified grain pellets plus hay; and (3) Commercial whole grain pellets plus hay. All lambs had ad libitum access to the basal hay diet and water. Post-slaughter fatty acid composition of the Longissimus thoracis et lumborum muscle, liver, kidney, and heart were determined using thee gas chromatography–mass spectrophotometry technique. Results indicated significant variations (p < 0.05) in fatty acid profiles between tissues and organs. Omega-3 oil fortified pellets significantly (p < 0.05) increased ≥C20 n-3 LC-PUFA (C20:5n-3 eicosapentaenoate, EPA + C22:5n3 docosapentaenoate, DPA + C22:6n3 docosahexanoate DHA); C18:3n-3 alpha-linolenate, ALA; C18:2 conjugated linoleic acid, CLA; total monounsaturated fatty acids, MUFA; polyunsaturated fatty acids, PUFA contents; and reduced the ratio of omega-6 to omega-3 fatty acids in all lamb organs and tissues without impacting shelf-life. The findings demonstrate that the inclusion of omega-3 oil in feedlot diets of lambs enhances the human health beneficial omega-3 long-chain polyunsaturated fatty acid profiles of edible muscle tissue and organs without compromising meat quality.


1992 ◽  
Vol 262 (1) ◽  
pp. R8-R13 ◽  
Author(s):  
S. C. Cunnane ◽  
Z. Y. Chen

Developmental changes in the content and composition of major organ lipid pools are not well known. Our objective was to assess quantitatively the changes in lipids, particularly those containing long-chain fatty acids, in the placenta and the brain, liver, and carcass of the fetal and suckling rat. Pregnant dams were killed at days 15, 18, and 21 (term) of pregnancy and the placentas and fetuses removed and analyzed; suckling rats were killed at days +3, +6, and +9 of lactation. Whereas the long-chain fatty acid content of the phospholipids (mg/g) of the fetal or suckling rat remained relatively constant from day 18 of pregnancy to day +9 of lactation, long-chain fatty acids in triacylglycerols increased from prenatal values by 10- to 12-fold during the first 9 postnatal days. Prenatally, triacylglycerol accounted for no more than 32% of total whole body essential fatty acids (day 21), but postnatally this increased to 81-88%. From day 21 to day +9, the proportion of n-6 and n-3 essential fatty acids within the total triacylglycerol pool of the suckling rat increased 71 and 317%, respectively. We conclude that in the suckling rat, triacylglycerol is quantitatively the most important source of essential fatty acids during at least the first 9 days of life.


1993 ◽  
Vol 71 (9) ◽  
pp. 683-683 ◽  
Author(s):  
M. T. Clandinin

Metabolism of long-chain polyunsaturated fatty acids derived from 18:2ω−6 and 18:3ω−3 by chain elongation – desaturation is essential for synthesis of complex structural lipids, leukotrienes, thromboxanes, and prostaglandins. These essential fatty acids are required for normal function in developing tissues and appropriate maturation of a wide variety of physiological processes. During development, fetal accretion of long-chain metabolites of ω−6 and ω−3 fatty acids may result from maternal or placental synthesis and transfer or, alternatively, from the metabolism of 18:2ω−6 and 18:3ω−3 to longer chain homologues by the fetus. After birth the infant must synthesize or be fed the very long chain polyunsaturated fatty acids of C20 and C22 type derived from 18:2ω−6 and 18:3ω−3.Metabolism of ω−6 and ω−3 fatty acids utilizes the same enzyme system and is competitive. When levels of dietary ω−3 and ω−6 C18 fatty acids are altered, the levels of metabolites of these precursor fatty acids change in specific brain membranes, influencing membrane lipid dependent functions. For example, a diet unbalanced in very long chain ω−3 and ω−6 fatty acids may increase brain membrane ω−3 fatty acid content when 20:5ω−3 is fed, while decreasing membrane fatty acid content of the ω−6 series of competing fatty acids. As 20:4ω−6 is quantitatively and qualitatively important to brain phospholipid, significant reduction in brain levels of 20:4ω−6 may be less than optimal. The impact of these compositional changes on brain function is not yet clear.The authors in this symposium address how this general area of essential fatty acid metabolism is relevant to the evolution of man, growth and development of fish, function of the retina and neural tissue, cognitive development of infants, and infant nutrition.


2007 ◽  
Vol 2007 ◽  
pp. 17-17
Author(s):  
C. Rymer ◽  
D.I. Givens

Enriching chicken meat with the very long chain n-3 polyunsaturated fatty acids (VLC n-3 PUFA) 20:5 (EPA) and 22:6 (DHA) is a possible means of increasing the human consumption of these essential fatty acids as current levels of intake of these fatty acids are extremely low. However, a potential drawback of increasing the VLC n-3 PUFA content of chicken meat is that the oxidative stability of the meat is reduced. Chicken meat is enriched with VLC n-3 PUFA by the addition of fish oil to the chickens’ diet. It is possible that using alternative dietary sources of VLC n-3 PUFA may increase the oxidative stability of the meat (Mooney et al., 1998). The objective of this experiment was to determine what the source of VLC n-3 PUFA in broilers’ diets had on the oxidative stability of their edible tissues.


2021 ◽  
Vol 8 ◽  
Author(s):  
Susan C. MacIntosh ◽  
Megan Shaw ◽  
Michael Connelly ◽  
Zhuyun June Yao

DHA canola, a genetically engineered Brassica napus (OECD Unique Identifier NS-B5ØØ27-4), has been developed as one of the first land-based production systems for omega-3 long-chain polyunsaturated fatty acids (LCPUFA), whose health benefits are well-established. Yet, the marine sources of these nutrients are under high pressures due to over-fishing and increasing demand. DHA canola is a plant-based source for these essential fatty acids that produces a high level of docosahexaenoic acid (DHA). This terrestrial system allows for sustainable, scalable and stable production of omega-3 LCPUFA that addresses not only the increasing market demand, but also the complex interplay of agriculture, aquaculture, and human nutrition. The vector used to produce the desired oil profile in DHA canola contains the expression cassettes of seven genes in the DHA biosynthesis pathway and was specifically designed to convert oleic acid to DHA in canola seed. The characterization and safety evaluation of food and feed produced from DHA canola are described and supported by a detailed nutritional analysis of the seed, meal, and oil. Aside from the intended changes of the fatty acid profile, none of the other compositional analytes showed biologically meaningful differences when compared to conventional canola varieties. In addition, the meal from DHA canola is compositionally equivalent to conventional canola meal. Further evidence of nutritional value and safety of DHA canola oil have been confirmed in fish feeding studies. Given that most human populations lack sufficient daily intakes of omega-3 LCPUFA, a dietary exposure assessment is also included. In conclusion, the results from these studies demonstrate it is safe to use products derived from DHA canola in human foods, nutraceuticals, or animal feeds.


Sign in / Sign up

Export Citation Format

Share Document