scholarly journals Acai Extract Transiently Upregulates Erythropoietin by Inducing a Renal Hypoxic Condition in Mice

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 533 ◽  
Author(s):  
Shuichi Shibuya ◽  
Toshihiko Toda ◽  
Yusuke Ozawa ◽  
Mario Jose Villegas Yata ◽  
Takahiko Shimizu

Acai (Euterpe oleracea Mart. Palmae, Arecaceae) is a palm plant native to the Brazilian Amazon. It contains many nutrients, such as polyphenols, iron, vitamin E, and unsaturated fatty acids, so in recent years, many of the antioxidant and anti-inflammatory effects of acai have been reported. However, the effects of acai on hematopoiesis have not been investigated yet. In the present study, we administered acai extract to mice and evaluated its hematopoietic effects. Acai treatment significantly increased the erythrocytes, hemoglobin, and hematocrit contents compared to controls for four days. Then, we examined the hematopoietic-related markers following a single injection. Acai administration significantly increased the levels of the hematopoietic-related hormone erythropoietin in blood compared to controls and also transiently upregulated the gene expression of Epo in the kidney. Furthermore, in the mice treated with acai extract, the kidneys were positively stained with the hypoxic probe pimonidazole in comparison to the controls. These results demonstrated that acai increases the erythropoietin expression via hypoxic action in the kidney. Acai can be expected to improve motility through hematopoiesis.

Author(s):  
Shuichi Shibuya ◽  
Toshihiko Toda ◽  
Yusuke Ozawa ◽  
Takahiko Shimizu

Acai (Euterpe oleracea Mart. Palmae, Arecaceae) is a palm plant native to the Brazilian Amazon. It contains many nutrients, such as polyphenols, iron, vitamin E, and unsaturated fatty acids, so in recent years, many of the antioxidant and anti-inflammatory effects of acai have been reported. However, the effects of acai on hematopoiesis have not been investigated yet. In the present study, we administered acai extract to mice and evaluated its hematopoietic effects. Acai treatment significantly increased the erythrocytes, hemoglobin, and hematocrit contents compared to controls for four days. We then examined the hematopoietic-related markers following a single injection. Acai administration significantly increased the levels of the hematopoietic-related hormone erythropoietin in blood compared to controls and also significantly upregulated the gene expression of Epo in the kidney. Furthermore, in the mice treated with acai extract, the kidneys were positively stained with the hypoxic probe pimonidazole in comparison to the controls. These results demonstrated that acai increases the number of blood cells through an increased erythropoietin expression via hypoxic action in the kidney. Acai can be expected to improve motility through hematopoiesis.


Author(s):  
L. P. Nilova ◽  
S. M. Malyutenkova

The results of studies of the biochemical composition and antioxidant properties of nuts sold in the consumer market of St. Petersburg were presented in the work. The objects of research were kernels of nuts: sweet almonds, hazelnuts, cashews, walnuts. Total Soxhlet lipids, fatty acid composition, vitamin E, fractional composition of tocopherols and phytosterols, total phenolic compounds and flavonoids, antioxidant activity by FRAP with ferric chloride, o-phenanthroline and Triton X 100 were determined in nuts. Nuts varied in lipid content (42.6–65.4%) with a predominance of unsaturated fatty acids from 80.4 to 92.4 relative%. Oleic acid prevailed in the fatty acids of almonds, hazelnuts and cashews, while linoleic acid prevailed in walnuts. Walnuts contained the highest amount of polyunsaturated fatty acids. The antioxidant properties of nuts were formed by a complex of water and fat-soluble antioxidants. Fat-soluble antioxidants included vitamin E with a predominance of ?-tocopherol in the kernels of sweet almonds and hazelnuts, ?-tocopherol - in walnuts and cashews. Only sweet almond kernels contained all the tocopherol fractions. ?- and ?-tocopherols were absent in hazelnut lipids, while ?-tocopherols were absent in cashews and walnuts. ?-sitosterol, campesterol and stigmasterol with a predominance of ?-sitosterol were identified in the composition of phytosterols in all nut kernels. Water-soluble antioxidants are mainly represented by phenolic compounds, the amount of which varies widely depending on the type of nuts: cashews


1995 ◽  
Vol 7 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Geneviève Vallette ◽  
Charlotte Sumida ◽  
Nicole Thobie ◽  
Emmanuel A. Nunez

1997 ◽  
Vol 1997 ◽  
pp. 47-47
Author(s):  
L. Vega ◽  
M. Enser ◽  
G.R. Nute ◽  
R.I. Richardson ◽  
R.C. Ball ◽  
...  

Previous research has demonstrated that dietary supplementation with high levels of die antioxidant vitamin E is effective in improving beef quality and shelf-life (Arnold et al., 1993). However, these animals did not have access to fresh forage which contains high levels of endogenous vitamin E and also higher concentrations of readily-oxidisable n-3 unsaturated fatty acids (Marmer et al, 1984). This study investigated the effectiveness of vitamin E in improving meat quality of grass finished cattle compared with those fed concentrates.


2016 ◽  
Vol 61 (No. 3) ◽  
pp. 99-105 ◽  
Author(s):  
M. Müller ◽  
Š. Horníčková ◽  
P. Hrabě ◽  
J. Mařík

The research was performed to examine the physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas. The test parameters were the dimensions of the seeds and kernels, required energy for oil extraction, determination of fatty acids in the oil by gas chromatography method, determination of the iodine value, determination of the acid value, determination of total polyphenols by the Folin & Ciocault reagent and determination of tocopherols and tocotrienols (vitamin E) by High-performance liquid chromatography. It was ascertained that the size of the seed and kernel varies considerably. Pressing of whole seeds needs more energy (50%) than pressing of kernels. From a chemical point of view it seems to be very appropriate for a production of biofuels. Jatropha curcas contains more polyphenols and vitamin E, which act as antioxidants, than the rape. Due to the low content of unsaturated fatty acids it is chemically suitable to replace the rape-seed oil with Jatropha curcas oil.


2020 ◽  
Vol 101 (1-2) ◽  
pp. 55-64
Author(s):  
Pamela I. Pérez‐Martínez ◽  
Oscar Rojas‐Espinosa ◽  
Víctor G. Hernández‐Chávez ◽  
Patricia Arce‐Paredes ◽  
Sergio Estrada‐Parra

2020 ◽  
Vol 88 (10) ◽  
Author(s):  
Erick Maosa Bosire ◽  
Colleen R. Eade ◽  
Carl J. Schiltz ◽  
Amanda J. Reid ◽  
Jerry Troutman ◽  
...  

ABSTRACT Successful colonization by enteric pathogens is contingent upon effective interactions with the host and the resident microbiota. These pathogens thus respond to and integrate myriad signals to control virulence. Long-chain fatty acids repress the virulence of the important enteric pathogens Salmonella enterica and Vibrio cholerae by repressing AraC-type transcriptional regulators in pathogenicity islands. While several fatty acids are known to be repressive, we show here that cis-2-unsaturated fatty acids, a rare chemical class used as diffusible signal factors (DSFs), are highly potent inhibitors of virulence functions. We found that DSFs repressed virulence gene expression of enteric pathogens by interacting with transcriptional regulators of the AraC family. In Salmonella enterica serovar Typhimurium, DSFs repress the activity of HilD, an AraC-type activator essential to the induction of epithelial cell invasion, by both preventing its interaction with target DNA and inducing its rapid degradation by Lon protease. cis-2-Hexadecenoic acid (c2-HDA), a DSF produced by Xylella fastidiosa, was the most potent among those tested, repressing the HilD-dependent transcriptional regulator hilA and the type III secretion effector sopB >200- and 68-fold, respectively. Further, c2-HDA attenuated the transcription of the ToxT-dependent cholera toxin synthesis genes of V. cholerae. c2-HDA significantly repressed invasion gene expression by Salmonella in the murine colitis model, indicating that the HilD-dependent signaling pathway functions within the complex milieu of the animal intestine. These data argue that enteric pathogens respond to DSFs as interspecies signals to identify appropriate niches in the gut for virulence activation, which could be exploited to control the virulence of enteric pathogens.


2019 ◽  
Vol 86 (3) ◽  
pp. 279-282
Author(s):  
Fabio Seiji Santos ◽  
Lucia Maria Zeoula ◽  
Luciano Soares De Lima ◽  
Francilaine Eloise De Marchi ◽  
Luís Carlos Vinhas Ítavo ◽  
...  

AbstractThis research communication addresses the hypothesis that the association of dietary vitamin E and Yerba Mate could help to prevent or decrease oxidation of milk enriched in unsaturated fatty acids (UFA). Four multiparous lactating Holstein cows were used in a 4 × 4 Latin square. Treatments were: (1) control diet with no Yerba Mate or vitamin E; (2) diet containing 375 IU/kg vitamin E; (3) diet containing 30 g/kg Yerba Mate; and (4) diet containing 375 IU/kg vitamin E and 30 g/kg Yerba Mate. To increase unsaturated fatty acids in milk, cows were fed 172 g/kg soybean seeds (on a dry matter basis). There was no interaction between vitamin E and Yerba Mate supplementation for milk antioxidant-related (polyphenols, reducing power, conjugated dienes, and TBARS) analyses. Milk reducing power was increased when cows were supplemented with Yerba Mate. Our results suggest that the association of dietary vitamin E and Yerba Mate does not help to prevent or decrease oxidation of milk in UFA.


2002 ◽  
Vol 14 (2) ◽  
pp. 139-142 ◽  
Author(s):  
José Francisco de C. Gonçalves ◽  
Andreia V. Fernandes ◽  
Antonio Fernando M. Oliveira ◽  
Lílian F. Rodrigues ◽  
Ricardo A. Marenco

The contents of the main components of the primary metabolism (soluble sugars, starch, proteins, oils, fatty acids) and minerals (P, Ca, Mg, K, Fe, Zn, Mn, Cu) were characterized in seeds of five Brazilian Amazon tree species (Andira parviflora, Bertholletia excelsa, Helicostylis tomentosa, Hymenaea parviflora, and Parkia pendula). Soluble sugar contents were high in P. pendula seeds (14 %), whereas starch predominated in A. parviflora seeds (58.7 %). A. parviflora and H. parviflora seeds were rich in proteins (35.1 % and 32.4 %, respectively). The oil contents ranged from 1.4 % in A. parviflora to 70.7 % in B. excelsa. Only B. excelsa and P. pendula seeds may be considered oilseeds, with 70.7 % and 28.4 % oil, respectively. The fatty acid compositions showed high proportions of unsaturated fatty acids, mainly oleic and linoleic acids, regardless of the species. B. excelsa and P. pendula also showed high amounts of P, Mg, K and Zn.


Sign in / Sign up

Export Citation Format

Share Document