scholarly journals Antitumor Effect of the Ethanolic Extract from Seeds of Euphorbia lathyris in Colorectal Cancer

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 566
Author(s):  
Cristina Mesas ◽  
Rosario Martínez ◽  
Raúl Ortíz ◽  
Milagros Galisteo ◽  
María López-Jurado ◽  
...  

The seeds of Euphorbia lathyris have been used in traditional medicine to treat various medical conditions. However, neither all of their active biocompounds nor the molecular mechanisms underlying their therapeutic effects have been described. A new ethanolic extract of defatted flour from mature seeds of Euphorbia lathyris showed a high total polyphenol content and significant antioxidant activity. Chromatographic analysis showed that esculetin, euphorbetin, gaultherin, and kaempferol-3-rutinoside were the most abundant polyphenolic bioactive compounds. Antiproliferative assays showed a high and selective antitumor activity against colon cancer cell lines (T84 and HCT-15). In addition, a significant antiproliferative activity against glioblastoma multiforme cells was also demonstrated. Its mechanism of action to induce cell death was mediated by the overexpression of caspases 9, 3, and 8, and by activation of autophagy. Interestingly, a reduction in the migration capacity of colon cancer cells and a significant antiangiogenic effect on human umbilical vein endothelial cells were also demonstrated. Finally, the extract significantly reduced the subpopulations of cancer stem cells. This extract could be the basis to develop new therapeutic strategies for the treatment of colon cancer, although further experiments will be necessary to determine its in vivo effects.

Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 404 ◽  
Author(s):  
Takuya Miyagawa ◽  
Zhi-Yu Chen ◽  
Che-Yi Chang ◽  
Ko-Hua Chen ◽  
Yang-Kao Wang ◽  
...  

Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate (EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization. Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.


Blood ◽  
2009 ◽  
Vol 114 (26) ◽  
pp. 5393-5399 ◽  
Author(s):  
Ronen Ben-Ami ◽  
Russell E. Lewis ◽  
Konstantinos Leventakos ◽  
Dimitrios P. Kontoyiannis

AbstractIn susceptible hosts, angioinvasion by Aspergillus fumigatus triggers thrombosis, hypoxia, and proinflammatory cytokine release, all of which are stimuli for angiogenesis. We sought to determine whether A fumigatus directly modulates angiogenesis. A fumigatus culture filtrates profoundly inhibited the differentiation, migration, and capillary tube formation of human umbilical vein endothelial cells in vitro. To measure angiogenesis at the site of infection, we devised an in vivo Matrigel assay in cyclophosphamide-treated BALB/c mice with cutaneous invasive aspergillosis. Angiogenesis was significantly suppressed in Matrigel plugs implanted in A fumigatus–infected mice compared with plugs from uninfected control mice. The antiangiogenic effect of A fumigatus was completely abolished by deletion of the global regulator of secondary metabolism, laeA, and to a lesser extent by deletion of gliP, which controls gliotoxin production. Moreover, pure gliotoxin potently inhibited angiogenesis in vitro in a dose-dependent manner. Finally, overexpression of multiple angiogenesis mediator–encoding genes was observed in the lungs of cortisone-treated mice during early invasive aspergillosis, whereas gene expression returned rapidly to baseline levels in cyclophosphamide/cortisone-treated mice. Taken together, these results indicate that suppression of angiogenesis by A fumigatus both in vitro and in a neutropenic mouse model is mediated through secondary metabolite production.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Lianhua He ◽  
Qingxia Qin ◽  
Juan He ◽  
Han Wang ◽  
Yiping Hu ◽  
...  

ErMiao San (EMS) is composed of the Cortex Phellodendri chinensis and Atractylodes lancea, and it has the function of eliminating heat and excreting dampness in terms of traditional Chinese medicine to damp heat syndrome. Previous reports indicate that EMS possesses anti-inflammatory activity; however, its action on angiogenesis of rheumatoid arthritis (RA) has not been clarified. The present study aims to determine the antiangiogenic activity of EMS in collagen-induced arthritis (CIA) mice and in various angiogenesis models. Our data showed that EMS (5 g/kg) markedly reduced the immature blood vessels in synovial membrane tissues of inflamed joints from CIA mice. It also inhibited vascular endothelial growth factor (VEGF)-induced microvessel sprout formation ex vivo. Meanwhile, EMS suppressed VEGF-induced migration, invasion, adhesion, and tube formation of human umbilical vein endothelial cells (HUVECs). Moreover, EMS significantly reduced the expression of angiogenic activators including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) in synovium of CIA mice. More interestingly, EMS blocked the autophosphorylation of VEGF-induced JAK1, STAT1, and STAT6 in CIA mice and VEGF-induced HUVECs. These findings suggest for the first time that EMS possesses the antiangiogenic effect in RA in vivo, ex vivo, and in vitro by interrupting the targeting of JAK/STAT activation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Na Yuan ◽  
Zhaogang Ge ◽  
Wenchen Ji ◽  
Jia Li

Recent studies have suggested that exosomes exert similar therapeutic effects to those of mesenchymal stem cells (MSCs) in regenerative medicine and MSCs-derived exosomes exhibit therapeutic effects on steroid-induced osteonecrosis of the femoral head (ONFH). Furthermore, reparative functions of exosomes from MSCs are enhanced by hypoxia treatment of the cells. However, there are no related reports about whether exosomes derived from hypoxia-preconditioned MSCs could show better therapeutic effects on steroid-induced ONFH. In vitro, we investigated the effects of hypoxia precondition on exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) from rats and the proangiogenic ability of exosomes derived from hypoxia-preconditioned BMMSCs. In vivo, we investigated the role of exosomes from hypoxia-preconditioned BMMSCs on angiogenesis and protecting osteonecrosis in a rat ONFH model. We found that the potential of the proangiogenic ability of exosomes derived from hypoxia-preconditioned BMMSCs was higher than exosomes derived from BMMSCs cultured under normoxia. Exosomes derived from hypoxia-preconditioned BMMSCs significantly promoted proliferation, migration, vascular endothelial growth factor (VEGF) expression, and tube formation of human umbilical vein endothelial cells (HUVECs) compared with exosomes derived from BMMSCs cultured under normoxia. Administration of exosomes derived from hypoxia-preconditioned BMMSCs significantly prevented bone loss and increased vessel volume in the femoral head compared with exosomes derived from BMMSCs cultured under normoxia. Taken together, our data suggest that exosomes derived from hypoxia-preconditioned BMMSCs exert better therapeutic effects on steroid-induced ONFH by promoting angiogenesis and preventing bone loss.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3169
Author(s):  
Kevin Doello ◽  
Cristina Mesas ◽  
Francisco Quiñonero ◽  
Gloria Perazzoli ◽  
Laura Cabeza ◽  
...  

Sodium selenite acts by depleting enzymes that protect against cellular oxidative stress. To determine its effect alone or in combination with gemcitabine (GMZ) in pancreatic cancer, we used PANC-1 and Pan02 cell lines and C57BL mice bearing a Pan02-generated tumor. Our results demonstrated a significant inhibition of pancreatic cancer cell viability with the use of sodium selenite alone and a synergistic effect when associated with GMZ. The molecular mechanisms of the antitumor effect of sodium selenite alone involved apoptosis-inducing factor (AIF) and the expression of phospho-p38 in the combined therapy. In addition, sodium selenite alone and in association with GMZ significantly decreased the migration capacity and colony-forming ability, reduced tumor activity in multicellular tumor spheroids (MTS) and decreased sphere formation of cancer stem cells. In vivo studies demonstrated that combined therapy not only inhibited tumor growth (65%) compared to the untreated group but also relative to sodium selenite or GMZ used as monotherapy (up to 40%), increasing mice survival. These results were supported by the analysis of C57BL/6 albino mice bearing a Pan02-generated tumor, using the IVIS system. In conclusion, our results showed that sodium selenite is a potential agent for the improvement in the treatment of pancreatic cancer and should be considered for future human clinical trials.


2005 ◽  
Vol 289 (4) ◽  
pp. H1669-H1675 ◽  
Author(s):  
John P. Cullen ◽  
Shariq Sayeed ◽  
Ying Jin ◽  
Nicholas G. Theodorakis ◽  
James V. Sitzmann ◽  
...  

The aim of this study was to determine the effect of ethanol (EtOH) on endothelial monocyte chemotactic protein-1 (MCP-1) expression. IL-1β increased the production of MCP-1 by human umbilical vein endothelial cells from undetectable levels to ∼900 pg/ml at 24 h. EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 secretion as determined by ELISA: 25 ± 1%, 35 ± 7%, and 65 ± 5% inhibition for 1, 10, and 100 mM EtOH, respectively, concomitant with inhibition of monocyte adhesion to activated endothelial cells. Similarly, EtOH dose-dependently inhibited IL-1β-stimulated MCP-1 mRNA expression. Experiments with actinomycin D demonstrated that EtOH decreased the stability of MCP-1 mRNA. In addition, EtOH significantly reduced NF-κB and AP-1 binding activity induced by IL-1β and inhibited MCP-1 gene transcription. Binding of 125I-labeled MCP-1 to its receptor (CCR2) on THP-1 human monocytic cells was not affected by EtOH treatment. Modulation of the expression of MCP-1 represents a mechanism whereby EtOH could inhibit atherogenesis by blocking the crucial early step of monocyte adhesion and subsequent recruitment to the subendothelial space. These actions of EtOH may underlie, in part, its cardiovascular protective effects in vivo.


2015 ◽  
Vol 35 (3) ◽  
pp. 875-884 ◽  
Author(s):  
Hongyuan Song ◽  
Dongyan Pan ◽  
Weifeng Sun ◽  
Cao Gu ◽  
Yuelu Zhang ◽  
...  

Background/Aims: Annexin II receptor (AXIIR) is able to mediate Annexin II signal and induce apoptosis, but its role in angiogenesis remains unclear. This study tries to investigate the role of AXIIR in angiogenesis and the plausible molecular mechanism. Methods/Results: RNA interference technology was used to silence AXIIR, and the subsequent effects in vitro and in vivo were evaluated thereafter. Our data indicated that human umbilical vein endothelial cells (HUVECs) expressed AXIIR and knockdown of AXIIR significantly inhibited HUVECs proliferation, adhesion, migration, and tube formation in vitro and suppressed angiogenesis in vivo. Furthermore, AXIIR siRNA induced cell arrest in the S/G2 phase while had no effect on cell apoptosis. We found that these subsequent effects might be via suppressing the expression of matrix metalloproteinase 2and matrix metalloproteinase 9. Conclusion: AXIIR participates in angiogenesis, and may be a potential therapeutic target for angiogenesis related diseases.


2021 ◽  
Vol 22 (15) ◽  
pp. 7844
Author(s):  
Jason S. Holsapple ◽  
Ben Cooper ◽  
Susan H. Berry ◽  
Aleksandra Staniszewska ◽  
Bruce M. Dickson ◽  
...  

Extracorporeal Shock Wave Therapy (ESWT) is used clinically in various disorders including chronic wounds for its pro-angiogenic, proliferative, and anti-inflammatory effects. However, the underlying cellular and molecular mechanisms driving therapeutic effects are not well characterized. Macrophages play a key role in all aspects of healing and their dysfunction results in failure to resolve chronic wounds. We investigated the role of ESWT on macrophage activity in chronic wound punch biopsies from patients with non-healing venous ulcers prior to, and two weeks post-ESWT, and in macrophage cultures treated with clinical shockwave intensities (150–500 impulses, 5 Hz, 0.1 mJ/mm2). Using wound area measurements and histological/immunohistochemical analysis of wound biopsies, we show ESWT enhanced healing of chronic ulcers associated with improved wound angiogenesis (CD31 staining), significantly decreased CD68-positive macrophages per biopsy area and generally increased macrophage activation. Shockwave treatment of macrophages in culture significantly boosted uptake of apoptotic cells, healing-associated cytokine and growth factor gene expressions and modulated macrophage morphology suggestive of macrophage activation, all of which contribute to wound resolution. Macrophage ERK activity was enhanced, suggesting one mechanotransduction pathway driving events. Collectively, these in vitro and in vivo findings reveal shockwaves as important regulators of macrophage functions linked with wound healing. This immunomodulation represents an underappreciated role of clinically applied shockwaves, which could be exploited for other macrophage-mediated disorders.


Sign in / Sign up

Export Citation Format

Share Document