scholarly journals Tangnaikang Alleviates Hyperglycemia and Improves Gut Microbiota in Diabetic Mice

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liping Zhang ◽  
Fen Wang ◽  
Hualiang He ◽  
Tingting Jiao ◽  
Lili Wu

Dysregulation of gut microbiota contributes to the development of type 2 diabetes. To investigate the antidiabetic effect of Tangnaikang and its regulation of gut microbiota in diabetic KKAy mice, a type 2 diabetes mouse model was established by feeding KKAy mice with a high-fat diet (HFD) for 2 weeks. The diabetic KKAy mice were treated with vehicle, Acarbose, or different doses of Tangnaikang once a day for 8 weeks. The fasting plasma glucose (FPG) levels and bodyweights were measured weekly. The fecal and blood samples were collected 8 weeks after treatment. The 16s rRNA sequencing and bioinformatics analysis were conducted to explore the effects of Tangnaikang treatment on the richness, diversity, and relative abundance of gut microbiota. Compared with other treatments, high-dose Tangnaikang (4.68 g/kg) significantly reduced FPG levels while elevating bodyweights in model mice. Compared with saline treatment, different doses of Tangnaikang significantly increased gut microbial species richness and diversity. Linear discriminant analysis effect size identified potential bacterial biomarkers associated with Tangnaikang treatment. Relative abundance analysis revealed that Tangnaikang treatment modulated the abundance of gut bacteria at the class and genus levels, such as Bacilli, Lactobacillus, and Alistipes. The principal component analysis demonstrated that, compared with the samples of the high-dose group, the samples of medium-dose and low-dose groups were closer to those of the model group. Tangnaikang alleviated hyperglycemia and improved the composition and abundance of gut microbiota in diabetic KKAy mice.

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


Author(s):  
Jiwoon Kim ◽  
Ji Sun Nam ◽  
Heejung Kim ◽  
Hye Sun Lee ◽  
Jung Eun Lee

Abstract. Background/Aims: Trials on the effects of cholecalciferol supplementation in type 2 diabetes with chronic kidney disease patients were underexplored. Therefore, the aim of this study was to investigate the effects of two different doses of vitamin D supplementation on serum 25-hydroxyvitamin D [25(OH)D] concentrations and metabolic parameters in vitamin D-deficient Korean diabetes patients with chronic kidney disease. Methods: 92 patients completed this study: the placebo group (A, n = 33), the oral cholecalciferol 1,000 IU/day group (B, n = 34), or the single 200,000 IU injection group (C, n = 25, equivalent to 2,000 IU/day). 52% of the patients had less than 60 mL/min/1.73m2 of glomerular filtration rates. Laboratory test and pulse wave velocity were performed before and after supplementation. Results: After 12 weeks, serum 25(OH)D concentrations of the patients who received vitamin D supplementation were significantly increased (A, -2.4 ± 1.2 ng/mL vs. B, 10.7 ± 1.2 ng/mL vs. C, 14.6 ± 1.7 ng/mL; p < 0.001). In addition, the lipid profiles in the vitamin D injection group (C) showed a significant decrease in triglyceride and a rise in HDL cholesterol. However, the other parameters showed no differences. Conclusions: Our data indicated that two different doses and routes of vitamin D administration significantly and safely increased serum 25(OH)D concentrations in vitamin D-deficient diabetes patients with comorbid chronic kidney disease. In the group that received the higher vitamin D dose, the lipid profiles showed significant improvement, but there were no beneficial effects on other metabolic parameters.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1393
Author(s):  
Ralitsa Robeva ◽  
Miroslava Nedyalkova ◽  
Georgi Kirilov ◽  
Atanaska Elenkova ◽  
Sabina Zacharieva ◽  
...  

Catecholamines are physiological regulators of carbohydrate and lipid metabolism during stress, but their chronic influence on metabolic changes in obese patients is still not clarified. The present study aimed to establish the associations between the catecholamine metabolites and metabolic syndrome (MS) components in obese women as well as to reveal the possible hidden subgroups of patients through hierarchical cluster analysis and principal component analysis. The 24-h urine excretion of metanephrine and normetanephrine was investigated in 150 obese women (54 non diabetic without MS, 70 non-diabetic with MS and 26 with type 2 diabetes). The interrelations between carbohydrate disturbances, metabolic syndrome components and stress response hormones were studied. Exploratory data analysis was used to determine different patterns of similarities among the patients. Normetanephrine concentrations were significantly increased in postmenopausal patients and in women with morbid obesity, type 2 diabetes, and hypertension but not with prediabetes. Both metanephrine and normetanephrine levels were positively associated with glucose concentrations one hour after glucose load irrespectively of the insulin levels. The exploratory data analysis showed different risk subgroups among the investigated obese women. The development of predictive tools that include not only traditional metabolic risk factors, but also markers of stress response systems might help for specific risk estimation in obesity patients.


Author(s):  
Dominic Salamone ◽  
Angela Albarosa Rivellese ◽  
Claudia Vetrani

AbstractGut microbiota and its metabolites have been shown to influence multiple physiological mechanisms related to human health. Among microbial metabolites, short-chain fatty acids (SCFA) are modulators of different metabolic pathways. On the other hand, several studies suggested that diet might influence gut microbiota composition and activity thus modulating the risk of metabolic disease, i.e. obesity, insulin resistance and type 2 diabetes. Among dietary component, dietary fibre may play a pivotal role by virtue of its prebiotic effect on fibre-fermenting bacteria, that may increase SCFA production. The aim of this review was to summarize and discuss current knowledge on the impact of dietary fibre as modulator of the relationship between glucose metabolism and microbiota composition in humans. More specifically, we analysed evidence from observational studies and randomized nutritional intervention investigating the relationship between gut microbiota, short-chain fatty acids and glucose metabolism. The possible mechanisms behind this association were also discussed.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2021 ◽  
Author(s):  
Rocío Mateo-Gallego ◽  
Isabel Moreno-Indias ◽  
Ana M. Bea ◽  
Lidia Sánchez-Alcoholado ◽  
Antonio J. Fumanal ◽  
...  

An alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity.


2019 ◽  
Vol 10 (5) ◽  
pp. 2935-2946 ◽  
Author(s):  
Rongkang Hu ◽  
Feng Zeng ◽  
Linxiu Wu ◽  
Xuzhi Wan ◽  
Yongfang Chen ◽  
...  

Carrot juice fermented with Lactobacillus rhamnosus GG, enriched with free phenolics, organic acids and short-chain fatty acid, has the potential to ameliorate type 2 diabetes, in part through modulating specific gut microbiota and regulating the mRNA and protein expressions levels involved in glucose metabolism.


Sign in / Sign up

Export Citation Format

Share Document