scholarly journals Impact of Glucosamine Supplementation on Gut Health

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2180
Author(s):  
Jessica M. Moon ◽  
Peter Finnegan ◽  
Richard A. Stecker ◽  
Hanna Lee ◽  
Kayla M. Ratliff ◽  
...  

Glucosamine (GLU) is a natural compound found in cartilage, and supplementation with glucosamine has been shown to improve joint heath and has been linked to reduced mortality rates. GLU is poorly absorbed and may exhibit functional properties in the gut. The purpose of this study was to examine the impact of glucosamine on gastrointestinal function as well as changes in fecal microbiota and metabolome. Healthy males (n = 6) and females (n = 5) (33.4 ± 7.7 years, 174.1 ± 12.0 cm, 76.5 ± 12.9 kg, 25.2 ± 3.1 kg/m2, n = 11) completed two supplementation protocols that each spanned three weeks separated by a washout period that lasted two weeks. In a randomized, double-blind, placebo-controlled, crossover fashion, participants ingested a daily dose of GLU hydrochloride (3000 mg GlucosaGreen®, TSI Group Ltd., USA) or maltodextrin placebo. Study participants completed bowel habit and gastrointestinal symptoms questionnaires in addition to providing a stool sample that was analyzed for fecal microbiota and metabolome at baseline and after the completion of each supplementation period. GLU significantly reduced stomach bloating and showed a trend towards reducing constipation and hard stools. Phylogenetic diversity (Faith’s PD) and proportions of Pseudomonadaceae, Peptococcaceae, and Bacillaceae were significantly reduced following GLU consumption. GLU supplementation significantly reduced individual, total branched-chain, and total amino acid excretion, with no glucosamine being detected in any of the fecal samples. GLU had no effect on fecal short-chain fatty acids levels. GLU supplementation provided functional gut health benefits and induced fecal microbiota and metabolome changes.

2016 ◽  
Vol 7 (4) ◽  
pp. 1805-1813 ◽  
Author(s):  
Junyi Yang ◽  
Devin J. Rose

A diet high in whole grains, dry beans, and certain vegetables that contributed dietary fiber, plant protein, and B vitamins resulted in high short chain fatty acids, while a diet high in diary and processed meats that provided cholesterol and little fiber resulted in high branched chain fatty acids and ammonia during fecal fermentation of inulin.


2010 ◽  
Vol 104 (7) ◽  
pp. 1007-1017 ◽  
Author(s):  
Adele Costabile ◽  
Sofia Kolida ◽  
Annett Klinder ◽  
Eva Gietl ◽  
Michael Bäuerlein ◽  
...  

There is growing interest in the use of inulins as substrates for the selective growth of beneficial gut bacteria such as bifidobacteria and lactobacilli because recent studies have established that their prebiotic effect is linked to several health benefits. In the present study, the impact of a very-long-chain inulin (VLCI), derived from globe artichoke (Cynara scolymus), on the human intestinal microbiota compared with maltodextrin was determined. A double-blind, cross-over study was carried out in thirty-two healthy adults who were randomised into two groups and consumed 10 g/d of either VLCI or maltodextrin, for two 3-week study periods, separated by a 3-week washout period. Numbers of faecal bifidobacteria and lactobacilli were significantly higher upon VLCI ingestion compared with the placebo. Additionally, levels ofAtopobiumgroup significantly increased, whileBacteroides–Prevotellanumbers were significantly reduced. No significant changes in faecal SCFA concentrations were observed. There were no adverse gastrointestinal symptoms apart from a significant increase in mild and moderate bloating upon VLCI ingestion. These observations were also confirmed byin vitrogas production measurements. In conclusion, daily consumption of VLCI extracted from globe artichoke exerted a pronounced prebiotic effect on the human faecal microbiota composition and was well tolerated by all volunteers.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1560-1560
Author(s):  
Inah Gu ◽  
Wing Shun Lam ◽  
Daya Marasini ◽  
Cindi Brownmiller ◽  
Brett Savary ◽  
...  

Abstract Objectives Arabinoxylan is a non-starch polysaccharide and rich in wheat, rice and many other cereal grains. Diets high in fiber help promoting gut health in obesity. The objective of this study was to investigate the impact of arabinoxylan from rice bran on the gut microbiota and short chain fatty acids (SCFA) in normal weight (NW) and overweight/obese (OO) subjects through in vitro fecal fermentation. Methods Arabinoxylan was extracted from rice bran fiber. For in vitro fecal fermentation, each fecal sample from NW (n = 6, 3 males and 3 females) and OO (n = 7, 3 males and 4 females) was diluted into anaerobic medium with three treatments: control (no substrates), fructooligosaccharides (FOS, a well-known prebiotic), and arabinoxylan. Samples were incubated at 37˚C and aliquots were taken at 0, 4, 8, 12 and 24 h. SCFA content from samples at all timepoints was analyzed using HPLC. Samples at 0 and 24 h were used for gut microbiota analysis through 16S rRNA gene sequencing. Statistical analyses were performed for the randomized complete block design, where the weight classes are confounded with blocks (subjects). Friedman test was used to determine the difference at 5% level of significance. Results As a result, arabinoxylan treatment significantly increased total SCFA concentration in both NW and OO subjects than control (P < 0.05), comparable to FOS treatment. Between weight classes under arabinoxylan treatment, OO group showed a significantly higher total SCFA content than NW group (P < 0.05). Arabinoxylan changed gut microbial population at the genus level, stimulating Bifidobacterium, Collinsella and Blautia and decreasing Clostridium XIVa and b, Dorea and Oscillibacter (P < 0.05). In addition, different microbiome population was shown in weight classes with three treatments, showing higher Bacteroides in NW and higher Prevotella in OO. Conclusions These results showed that arabinoxylan from rice bran modified gut microbiota in both weight classes, increasing total SCFA content. This study suggests that arabinoxylan from rice bran may have a potential impact on microbial gut health in obesity with prebiotic activities. Funding Sources University of Arkansas.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3194
Author(s):  
Jing Wang ◽  
Yong Chen ◽  
Xiaosong Hu ◽  
Fengqin Feng ◽  
Luyun Cai ◽  
...  

The beneficial effects of ginger polyphenols have been extensively reported. However, their metabolic characteristics and health effects on gut microbiota are poor understood. The purpose of this study was to investigate the digestion stability of ginger polyphenols and their prebiotic effects on gut microbiota by simulating digestion and fermentation in vitro. Following simulated digestion in vitro, 85% of the polyphenols were still detectable, and the main polyphenol constituents identified in ginger extract are 6-, 8-, and 10-gingerols and 6-shogaol in the digestive fluids. After batch fermentation, the changes in microbial populations were measured by 16S rRNA gene Illumina MiSeq sequencing. In mixed-culture fermentation with fecal inoculate, digested ginger extract (GE) significantly modulated the fecal microbiota structure and promoted the growth of some beneficial bacterial populations, such as Bifidobacterium and Enterococcus. Furthermore, incubation with GE could elevate the levels of short-chain fatty acids (SCFAs) accompanied by a decrease in the pH value. Additionally, the quantitative PCR results showed that 6-gingerol (6G), as the main polyphenol in GE, increased the abundance of Bifidobacterium significantly. Therefore, 6G is expected to be a potential prebiotic that improves human health by promoting gut health.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 305-306
Author(s):  
Quanhang Xiang ◽  
Jian Peng

Abstract The objective of this study was to investigate the effects of early gut colonization by fecal microbiota transplantation and probiotics intervention on growth performance, immunity function, and gut health of piglets. A total of 121 pregnant sows were divided into 6 groups with average parity of 3.66 ± 1.34. After delivery, piglets of group AB were treated with antibiotics at age of 3-day. Piglets of group CON were gavaged with PBS. The remaining four treatment groups, FMT, FMT+C, FMT+S, and FMT+C+S, the piglets were gavaged with fecal suspension, fecal suspension with C. butyricum, fecal suspension with S. boulardii, and fecal suspension with C. butyricum and S.boulardii, respectively, with the frequency of once daily in the first 3 days. All the piglets were weaned at age of 21 day. The individual body weight of piglets were weighed weekly, blood samples and fecal samples were collected weekly. At the end of study, the ADG and diarrhea rate were caculated. FMT+C+S and FMT could increased piglets 21-day-old weight (P < 0.01), and FMT+C+S could increased ADG (P < 0.05) and decreased diarrhea rate (P < 0.05). Early antibiotics exposure for health care has no positive effect on growth performance and diarrhea. FMT, FMT+S and FMT+C+S improved fecal sIgA and plasma IgG of 14-day-old piglets (P < 0.05). FMT+C+S decreased the concentration of plasma DAO and D-LA, and increased fecal MUC2 content, so that the intestinal barrier was enhanced. The early intervention of FMT combined with C. butyricum and S. boulardii reduced the abundance of E. coli, and increased the abundance of Lactobacillus, Bifidobacterium and Faecalibacterium prausnitzii. In addition, it also increases the production of intestinal short-chain fatty acids. In conclusion, these data indicated that early intervention with FMT combined C. butyricum and S. boulardii could improve the growth performance, immune responses, and gut function of sucking piglets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao-Ming Xu ◽  
Hong-Li Huang ◽  
Jing Xu ◽  
Jie He ◽  
Chong Zhao ◽  
...  

Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography–mass spectrometry (LC–MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1635 ◽  
Author(s):  
Dale ◽  
Jensen ◽  
Hausken ◽  
Valeur ◽  
Hoff ◽  
...  

Peptides from fish may beneficially affect several metabolic outcomes, including gut health and inflammation. The effect of fish peptides in subjects with irritable bowel syndrome (IBS) has not previously been investigated, hence this study aimed to evaluate the effect of a cod protein hydrolysate (CPH) supplement on symptom severity, gut integrity markers and fecal fermentation in IBS-patients. A double-blind, randomized parallel-intervention with six weeks of supplementation with 2.5 g CPH (n = 13) or placebo (n = 15) was conducted. The outcomes were evaluated at baseline and the end of the study. The primary outcomes were symptom severity evaluated by the IBS severity scoring system (IBS-SSS) and quality of life. The secondary outcomes included gut integrity markers and pro-inflammatory cytokines in serum, fecal fermentation measured by concentration of short-chain fatty acids (SCFAs) and fecal calprotectin. The groups were comparable at baseline. The total IBS-SSS-scores were reduced in both the CPH-group (298 ± 69 to 236 ± 106, p = 0.081) and the placebo-group (295 ± 107 to 202 ± 103, p = 0.005), but the end of study-scores did not differ (p = 0.395). The concentrations of serum markers and SCFAs did not change for any of the groups. The baseline measures for the whole group showed that the total SCFA concentrations were inversely correlated with the total IBS-SSS-score (r = −0.527, p = 0.004). Our study showed that a low dose of CPH taken daily by IBS-patients for six weeks did not affect symptom severity, gut integrity markers or fecal fermentation when compared to the placebo group.


2007 ◽  
Vol 98 (3) ◽  
pp. 540-549 ◽  
Author(s):  
Brigitta Kleessen ◽  
Sandra Schwarz ◽  
Anke Boehm ◽  
H. Fuhrmann ◽  
A. Richter ◽  
...  

A study was conducted to test the effects of Jerusalem artichoke inulin (JA) or chicory inulin (CH) in snack bars on composition of faecal microbiota, concentration of faecal SCFA, bowel habit and gastrointestinal symptoms. Forty-five volunteers participated in a double-blind, randomized, placebo-controlled, parallel-group study. At the end of a 7 d run-in period, subjects were randomly assigned to three groups of fifteen subjects each, consuming either snack bars with CH or JA, or snack bars without fructans (placebo); for 7 d (adaptation period), they ingested one snack bar per day (7·7 g fructan/d) and continued for 14 d with two snack bars per day. The composition of the microbiota was monitored weekly. The consumption of CH or JA increased counts of bifidobacteria (+1·2 log10in 21 d) and reducedBacteroides/Prevotellain number and theClostridium histolyticum/C. lituseburensegroup in frequency at the end of intervention (P < 0·05). No changes in concentration of faecal SCFA were observed. Consumption of snack bars resulted in a slight increase in stool frequency. Stool consistency was slightly affected in subjects consuming two snack bars containing CH or JA per day (P < 0·05). Consumption of CH or JA resulted in mild and sometimes moderate flatulence in a few subjects compared to placebo (P < 0·05). No structural differences were detected between CH and JA before and after processing. In conclusion, adaptation on increased doses of CH or JA in bakery products stimulates the growth of bifidobacteria and may contribute to the suppression of potential pathogenic bacteria.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 124
Author(s):  
Jessica M. Moon ◽  
Kayla M. Ratliff ◽  
Anthony M. Hagele ◽  
Richard A. Stecker ◽  
Petey W. Mumford ◽  
...  

Berberine is a natural alkaloid used to improve glycemia but displays poor bioavailability and increased rates of gastrointestinal distress at higher doses. Recently, dihydroberberine has been developed to combat these challenges. This study was designed to determine the rate and extent to which berberine appeared in human plasma after oral ingestion of a 500 mg dose of berberine (B500) or 100 mg and 200 mg doses of dihydroberberine (D100 and D200). In a randomized, double-blind, crossover fashion, five males (26 ± 2.6 years; 184.2 ± 11.6 cm; 91.8 ± 10.1 kg; 17.1 ± 3.5% fat) completed a four-dose supplementation protocol of placebo (PLA), B500, D100, and D200. The day prior to their scheduled visit, participants ingested three separate doses with breakfast, lunch, and dinner. Participants fasted overnight (8–10 h) and consumed their fourth dose with a standardized test meal (30 g glucose solution, 3 slices white bread) after arrival. Venous blood samples were collected 0, 20, 40, 60, 90, and 120 minutes (min) after ingestion and analyzed for BBR, glucose, and insulin. Peak concentration (CMax) and area under the curve (AUC) were calculated for all variables. Baseline berberine levels were different between groups (p = 0.006), with pairwise comparisons indicating that baseline levels of PLA and B500 were different than D100. Berberine CMax tended to be different (p = 0.06) between all conditions. Specifically, the observed CMax for D100 (3.76 ± 1.4 ng/mL) was different than PLA (0.22 ± 0.18 ng/mL, p = 0.005) and B500 (0.4 ± 0.17 ng/mL, p = 0.005). CMax for D200 (12.0 ± 10.1 ng/mL) tended (p = 0.06) to be different than B500. No difference in CMax was found between D100 and D200 (p = 0.11). Significant differences in berberine AUC were found between D100 (284.4 ± 115.9 ng/mL × 120 min) and PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.007) and between D100 and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.04). Significant differences in D100 BBR AUC (284.4 ± 115.9 ng/mL×120 min) were found between PLA (20.2 ± 16.2 ng/mL × 120 min, p = 0.042) and B500 (42.3 ± 17.6 ng/mL × 120 min, p = 0.045). Berberine AUC values between D100 and D200 tended (p = 0.073) to be different. No significant differences in the levels of glucose (p = 0.97) and insulin (p = 0.24) were observed across the study protocol. These results provide preliminary evidence that four doses of a 100 mg dose of dihydroberberine and 200 mg dose of dihydroberberine produce significantly greater concentrations of plasma berberine across of two-hour measurement window when compared to a 500 mg dose of berberine or a placebo. The lack of observed changes in glucose and insulin were likely due to the short duration of supplementation and insulin responsive nature of study participants. Follow-up efficacy studies on glucose and insulin changes should be completed to assess the impact of berberine and dihydroberberine supplementation in overweight, glucose intolerant populations.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12158
Author(s):  
Witida Sathitkowitchai ◽  
Narissara Suratannon ◽  
Suttipun Keawsompong ◽  
Wanlapa Weerapakorn ◽  
Preecha Patumcharoenpol ◽  
...  

The impact of copra meal hydrolysate (CMH) on gut health was assessed by conducting a double-blinded, placebo-controlled study. Sixty healthy adult participants, aged 18–40 years were assigned to daily consume 3 g of CMH, 5 g of CMH or placebo in the form of drink powder for 21 days. Consumption of CMH at 3 g/d improved defecating conditions by reducing stool size and also relieved flatulence and bloating symptoms. Fecal samples were collected serially at the baseline before treatment, after the treatment and after a 2-week washout period. The gut microbiomes were similar among the treatment groups, with microbial community changes observed within the groups. Intake of CMH at 3 g/d led to increase microbial diversity and richness. Reduction of the ratio between Firmicutes to Bacteroidetes was observed, although it was not significantly different between the groups. The 3 g/d CMH treatment increased beneficial microbes in the group of fiber-degrading bacteria, especially human colonic Bacteroidetes, while induction of Bifidobacteriaceae was observed after the washout period. Intake of CMH led to increase lactic acid production, while 3 g/d supplement promoted the present of immunoglobulin A (IgA) in stool samples. The 3 g daily dose of CMH led to the potentially beneficial effects on gut health for healthy individuals.


Sign in / Sign up

Export Citation Format

Share Document