scholarly journals Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3266
Author(s):  
Innocent U. Okagu ◽  
Joseph C. Ndefo ◽  
Emmanuel C. Aham ◽  
Joy I. Obeme-Nmom ◽  
Precious E. Agboinghale ◽  
...  

There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.

2021 ◽  
Vol 11 (2) ◽  
pp. 811
Author(s):  
Federica Ianni ◽  
Alessandra Anna Altomare ◽  
Beniamino T. Cenci-Goga ◽  
Francesca Blasi ◽  
Luca Grispoldi ◽  
...  

Among various food sources, milk proteins remain the major vector for functional peptides endowed with several biological activities. Particularly, the proteolytic activity of lactic acid bacteria during milk fermentation has been one of the most followed strategies to produce bioactive peptides. In the present study, the exploration of the activity of several starter cultures, at different fermentation times, was firstly investigated by reversed phase-high performance liquid chromatography. Among the tested strains, Lactobacillus helveticus showed a higher proteolytic activity and it was submitted to further investigations by changing the fermentation substrate (skim milk, brain heart infusion, peptone water) as well as the extraction strategy (trichloroacetic acid vs. glass beads). The chromatographic analyses and the in vitro antioxidant and antihypertensive assays highlighted considerable differences for L. helveticus hydrolysates from different substrates, while a negligible impact by the two extraction protocols emerged. Furthermore, nano-high pressure liquid chromatography coupled with a high resolution mass spectrometry analyzer allowed the preliminary discrimination of fractions from fermented skim milk, likely responsible for the found activity. The obtained results suggest the possibility of varying the fermentation parameters in order to maximize the functional effects of the bioactive peptides.


2019 ◽  
Vol 65 (1) ◽  
pp. 55-70 ◽  
Author(s):  
Marcin Ożarowski ◽  
Radosław Kujawski ◽  
Przemysław Ł. Mikołajczak ◽  
Karolina Wielgus ◽  
Andrzej Klejewski ◽  
...  

Summary Flavonoids and their conjugates are the most important group of natural chemical compounds in drug discovery and development. The search for pharmacological activity and new mechanisms of activity of these chemical compounds, which may inhibit mediators of inflammation and influence the structure and function of endothelial cells, can be an interesting pharmacological strategy for the prevention and adjunctive treatments of hypertension, especially induced by pregnancy. Because cardiovascular diseases have multi-factorial pathogenesis these natural chemical compounds with wide spectrum of biological activities are the most interesting source of new drugs. Extracts from one of the most popular plant used in Traditional Chinese Medicine, Scutellaria baicalensis Georgi could be a very interesting source of flavonoids because of its exact content in quercetin, apigenin, chrysin and scutellarin as well as in baicalin. These flavonoids exert vasoprotective properties and many activities such as: anti-oxidative via several pathways, anti-in-flammatory, anti-ischaemic, cardioprotective and anti-hypertensive. However, there is lack of summaries of results of studies in context of potential and future application of flavonoids with determined composition and activity. Our review aims to provide a literature survey of in vitro, in vivo and ex vivo pharmacological studies of selected flavonoids (apigenin, chrysin and scutellarin, baicalin) in various models of hypertension carried out in 2008–2018.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2019 ◽  
pp. 1-11
Author(s):  
A. F. Ogori ◽  
A. T. Girgih ◽  
J. O. Abu ◽  
M. O. Eke

The bioactive peptides produced by enzymatic hydrolysis, acid hydrolysis and fermentation approach have been identified and used widely in research. These methods are important in enhancement or prevention and management of chronic diseases that are ravaging the world such as type -2-diabetes, hypertension, oxidative stress, cancer, and obesity. Sources of bioactive peptides have been established ranging from plant to animal and marine foods that have pharmacological effects; however these effects are dependent on target cells and peptides structure and conformations.  Plants such as hemp and animal source such as milk among others validate the findings of In vitro and In-vivo studies and the efficiency of these bioactive peptides in the management of certain chronic diseases. This article reviews the literature on bioactive peptides with concern on food sources, production and bioactive peptides application in enhancement of health and management of hypertension, diabetes and oxidative stress.  Future research efforts on bioactive peptides should be directed towards elucidating specific sequenced bioactive peptides and their molecular mechanisms, through In-vivo and In-vitro studies for specific health condition in human using nutrigenomics and peptideomic approaches.


2015 ◽  
Vol 61 (6) ◽  
pp. 680-693 ◽  
Author(s):  
E.Yu. Moskaleva ◽  
V.G. Perevozchikova ◽  
A.S. Zhirnik ◽  
S.E. Severin

In this review the recent data regarding the antitumor activity of niclosamide and the molecular mechanisms of its antitumor activity are presented. Niclosamide has been used in the clinic for the treatment of intestinal parasite infections. In recent years in several screening investigations of various drugs and chemical compounds niclosamide was identified as a potential anticancer agent. Niclosamide not only inhibits the Wnt/b-catenin, mTORC1, STAT3, NF-kB and Notch signaling pathways, but also targets mitochondria in cancer cells to induce growth inhibition and apoptosis. A number of studies have established the anticancer activity of niclosamide in both in vitro and in vivo in xenotransplantation models using human tumors and immunodeficient mice. It is important that niclosamide is active not only against tumor cells but also cancer stem cells. Normal cells are resistant to niclosamide. The accumulated experimental data suggest niclosamide is a promising drug for the treatment of various types of cancer.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4941
Author(s):  
Abdelwahab Khalil ◽  
Basem H. Elesawy ◽  
Tarek M. Ali ◽  
Osama M. Ahmed

Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Qinqin Qiao ◽  
Liang Chen ◽  
Xiang Li ◽  
Xiangyang Lu ◽  
Qingbiao Xu

Bioactive peptides (BPs) are fragments of 2–15 amino acid residues with biological properties. Dietary BPs derived from milk, egg, fish, soybean, corn, rice, quinoa, wheat, oat, potato, common bean, spirulina, and mussel are reported to possess beneficial effects on redox balance and metabolic disorders (obesity, diabetes, hypertension, and inflammatory bowel diseases (IBD)). Peptide length, sequence, and composition significantly affected the bioactive properties of dietary BPs. Numerous studies have demonstrated that various dietary protein-derived BPs exhibited biological activities through the modulation of various molecular mechanisms and signaling pathways, including Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2/antioxidant response element in oxidative stress; peroxisome proliferator-activated-γ, CCAAT/enhancer-binding protein-α, and sterol regulatory element binding protein 1 in obesity; insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B and AMP-activated protein kinase in diabetes; angiotensin-converting enzyme inhibition in hypertension; and mitogen-activated protein kinase and nuclear factor-kappa B in IBD. This review focuses on the action of molecular mechanisms of dietary BPs and provides novel insights in the maintenance of redox balance and metabolic diseases of human.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Xiaojing Zhang ◽  
Yin Peng ◽  
Yuan Yuan ◽  
Yuli Gao ◽  
Fan Hu ◽  
...  

Abstract Gastric cancer (GC) is the most common cancer throughout the world. Despite advances of the treatments, detailed oncogenic mechanisms are largely unknown. In our previous study, we investigated microRNA (miR) expression profiles in human GC using miR microarrays. We found miR-192/215 were upregulated in GC tissues. Then gene microarray was implemented to discover the targets of miR-192/215. We compared the expression profile of BGC823 cells transfected with miR-192/215 inhibitors, and HFE145 cells transfected with miR-192/-215 mimics, respectively. SET8 was identified as a proposed target based on the expression change of more than twofold. SET8 belongs to the SET domain-containing methyltransferase family and specifically catalyzes monomethylation of H4K20me. It is involved in diverse functions in tumorigenesis and metastasis. Therefore, we focused on the contributions of miR-192/215/SET8 axis to the development of GC. In this study, we observe that functionally, SET8 regulated by miR-192/215 is involved in GC-related biological activities. SET8 is also found to trigger oncogene-induced senescence (OIS) in GC in vivo and in vitro, which is dependent on the DDR (DNA damage response) and p53. Our findings reveal that SET8 functions as a negative regulator of metastasis via the OIS-signaling pathway. Taken together, we investigated the functional significance, molecular mechanisms, and clinical impact of miR-192/215/SET8/p53 in GC.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Marta Gallardo-Fernández ◽  
Ruth Hornedo-Ortega ◽  
Isabel M. Alonso-Bellido ◽  
José A. Rodríguez-Gómez ◽  
Ana M. Troncoso ◽  
...  

Neuroinflammation is a common feature shared by neurodegenerative disorders, such as Parkinson’s disease (PD), and seems to play a key role in their development and progression. Microglia cells, the principal orchestrators of neuroinflammation, can be polarized in different phenotypes, which means they are able to have anti-inflammatory, pro-inflammatory, or neurodegenerative effects. Increasing evidence supports that the traditional Mediterranean dietary pattern is related to the reduction of cognitive decline in neurodegenerative diseases. A considerable intake of plant foods, fish, and extra virgin olive oil (EVOO), as well as a moderate consumption of red wine, all characteristic of the Mediterranean diet (MD), are behind these effects. These foods are especially rich in polyphenols, being the most relevant in the MD hydroxytyrosol (HT) and their derivatives present in EVOO, which have demonstrated a wide array of biological activities. Here, we demonstrate that HT is able to reduce the inflammation induced by two different stimuli: lipopolysaccharide and α-synuclein. We also study the possible molecular mechanisms involved in the anti-inflammatory effect of HT, including the study of nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and inflammasome. Our data support the use of HT to prevent the inflammation associated with PD and shed light into the relationship between MD and this neurological disorder.


Sign in / Sign up

Export Citation Format

Share Document