scholarly journals Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 185 ◽  
Author(s):  
Mahmoud A. O. Dawood ◽  
Mohammed F. El Basuini ◽  
Amr I. Zaineldin ◽  
Sevdan Yilmaz ◽  
Md. Tawheed Hasan ◽  
...  

Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpens, terpenoids, phenylpropenes, and isothiocyanates with synergistic relationship among these compounds. The hydrophobic compounds of EOs can penetrate the bacterial and parasitic cells and cause cell deformities and organelles dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms. Published research reports also demonstrated EOs effectiveness against Ichthyophthirius multifiliis, Gyrodactylus sp., Euclinostomum heterostomum, and other parasites both in vivo and in vitro. Moreover, different infectious fish pathogenic bacteria like Aeromonas salmonicida, Vibrio harveyi, and Streptococcus agalactiae destruction was confirmed by plant originated EOs. However, no research was conducted to confirm the mechanism of action or pathway identification of EOs to combat aquatic parasites and disease-causing microbes. This review aims to explore the effectiveness of EOs against fish parasites and pathogenic bacteria as an environment-friendly phytotherapeutic in the aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4530 ◽  
Author(s):  
Agnes Peterfalvi ◽  
Eva Miko ◽  
Tamas Nagy ◽  
Barbara Reger ◽  
Diana Simon ◽  
...  

The augmenting acceptance and application of herbal medicine in prevention and treatment of diseases also involve the use of plant essential oils (EOs) through different routes of administration (aromatherapy). Scientific data supporting the efficacy of certain herbal products are continuously growing; however, the cumulative evidence is not always sufficient. The anti-inflammatory properties of EOs have been investigated more extensively and also reviewed in different settings, but so far, our review is the first to summarize the immune-supporting properties of EOs. Our aim here is to synthesize the currently available data on the immune function enhancing effects of EOs. An online search was conducted in the PubMed database, which was terminated at the end of July 2019. Other articles were found in the reference lists of the preselected papers. Studies that applied whole EOs with known components, or single EO constituents under in vitro or in vivo laboratory conditions, or in human studies, and de facto measured parameters related to immune function as outcome measures were included. Two specific fields, EO dietary supplementation for livestock and fish, and forest bathing are also explored. Some EOs, particularly eucalyptus and ginger, seem to have immune function enhancing properties in multiple studies.


2018 ◽  
Vol 31 ◽  
pp. 13 ◽  
Author(s):  
Marcos Tavares-Dias

This review article focuses on current knowledge about in vitro and in vivo experimentation relating to use of essential oils (EOs) to combat fish parasites. In addition, we discuss the existing methodologies used in studies to determine the antiparasitic activity of EOs, along with their toxicity and major compounds. The methodological approaches used to describe the anthelmintic properties of EOs were demonstrated. The consistency of their activity and thus their potential use for fish ectoparasites (in vitro and in vivo) and endoparasites (in vitro) control was reviewed. There is a clear need to find EOs and active agents of EOs to treatment in vivo against endoparasites of fish. Thus, progress may be achieved through considering the beneficial aspects of EOs when their complementarity and potentiality are exploited. EOs are therefore viable alternative sources of therapeutic products against fish parasites. On the other hand, use of chemotherapeutics has been increasingly questioned, such that constant environmental and consumer concerns regarding them now exist. The synergistic functions of EOs, in comparison with the action of one or two major compounds of these oils, seems unquestionable. It is possible that their activity is modulated by several molecules of the major compounds. Lastly, EOs are bioactive products that are viable sources of therapy against fish parasites. Although more than 3000 EOs are known, less than 0.4% of them have been tested on fish parasites. Thus, it has become clear that more studies testing these therapeutic alternatives are required, in order to evaluate the antiparasitic potential of other EOs for controlling fish parasites and to maximize their benefits to hosts.


2021 ◽  
Author(s):  
Rebeca Martinez Rodriguez ◽  
Maria Alejandra Fernandez-Trujillo ◽  
Liz Hernandez ◽  
Adrián Page ◽  
Julia Béjar ◽  
...  

Abstract Aquaculture constitutes an alternative source for food production and contributes to the reduction of indiscriminate catch of aquatic organisms from their natural environment (Diaz & Neira, 2005; Beveridge et al., 2013). However, high mortality during larval state remains a challenge in this sector, mainly because of factors like diets and diseases induced by pathogens (Helvik et al., 2009; Stentiford et al., 2017). Therefore, growth and health management is a key strategy for sustainable aquaculture (Martinez et al., 2016a).


2012 ◽  
Vol 52 (4) ◽  
pp. 467-471 ◽  
Author(s):  
Artur Mikiciński ◽  
Piotr Sobiczewski ◽  
Stanisław Berczyński

Abstract In the framework of the performed studies, the antibacterial activity of the following fungicides was evaluated: Miedzian 50 WG (active substance - a.s. 50% copper oxychloride), Ridomil MZ Gold 68 WG (a.s. 3.8% metalaxyl-M and 64%, mancozeb), Euparen Multi 50 WG (a.s. 50% tolylfluanid), Captan 80 WG [a.s. 80% N-(captan)], Dithane Neotec 75 WG (a.s. 75% mancozeb). The evaluation also concerned the essential oils: lavender, sage, lemon balm, clove, and a preparation based on thyme oil (BioZell). Each preparation and compound was tested against the following bacterial pathogens: Erwinia amylovora, Xanthomonas arboricola pv. corylina, X. arboricola pv. juglandis, Pseudomonas syringae pv. syringae, Agrobacterium tumefaciens (presently Rhizobium radiobacter). Each preparation and compound was tested at a concentration of 1,000 ppm of active substance. Copper oxychloride was also tested at a concentration of 1,500 ppm. Among the tested fungicides, metalaxyl-M with mancozeb, mancozeb alone, and copper oxychloride inhibited all of the tested strains of pathogenic bacteria. Tolylfluanid did not inhibit any of the bacteria used. Out of the investigated essential oils, the strongest inhibitors of bacteria were: sage, cloves, and BioZell. The protective activity of the above mentioned fungicides was also evaluated in vivo. They were assessed against fire blight on apple blossoms and pear fruitlets, against bacterial canker on sweet cherry fruitlets, and against crown gall on sunflower seedlings (the test plant). All fungicides were applied at the same concentrations as those in the in vitro tests. Only copper oxychloride was found to show protective activity against the studied diseases. This result indicates that the antibacterial properties of the other fungicides did not correspond with their activity on the plant organs used in the in vivo experiment.


Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
MJ Groot ◽  
MG Pikkemaat ◽  
WD Driessen van Lankveld
Keyword(s):  

2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


2017 ◽  
Vol 68 (8) ◽  
pp. 1711-1715
Author(s):  
Stefania Gheorghe ◽  
Gabriela Geanina Vasile ◽  
Cristina Gligor ◽  
Irina Eugenia Lucaciu ◽  
Mihai Nita Lazar

Metallic elements copper (Cu), zinc (Zn), nickel (Ni) and manganese (Mn) are some of the most commonly found in water and sediment samples collected from the Danube - Danube Delta. These elements are important as essential micronutrients, being normally present at low concentrations in biological organisms, but in high concentrations they become toxic with immediate and delayed effects. The role of this metals is still controversial, that�s why bioconcentration potential is so important. In this non-clinical study, we tested in vitro effect of heavy metals on carp, Cyprinus carpio, reproducing in vivo presence of Cu, Zn, Ni and Mn in the Romanian�s surface water. The toxicity tests were performed according to OECD 203 by detecting the average (50%) lethal concentration - LC50 on aquatic organisms (freshwater fish) at 96h. The results pointed out that, copper value for LC 50 at 96h was estimated as 3.4 mg/L (concentrations tested in the range of 0.1 - 4.75 mg/L). Zinc value for LC 50 at 96h was estimated as 20.8 mg/L (concentrations tested in the range of 0.028 � 29.6 mg/L). Nickel value for LC 50 at 96h was estimated as 40.1 mg/L (concentrations tested in the range of 0.008 - 84.5 mg/L). For manganese the mortality effects has recorded at LC 50 at 96h at estimated value higher than 53 mg/L (concentrations tested in the range of 0.04 - 53.9 mg/L). The accuracy of the testing metals concentration was insured by the screening of the dilution water, as well as food and control fish, acclimated in laboratory conditions.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 132-132
Author(s):  
Sergio Calsamiglia ◽  
Maria Rodriguez-Prado ◽  
Gonzalo Fernandez-Turren ◽  
Lorena Castillejos

Abstract In the last 20 years there has been extensive in vitro research on the effects of plant extracts and essential oils on rumen microbial fermentation. The main objectives have been to improve energy metabolism through a reduction in methane emissions and an increase in propionate production; and to improve protein metabolism by reducing proteolysis and deamination. While the positive results from in vitro studies has stimulated the release of commercial products based on blends of essential oils, there is limited in vivo evidence on the rumen fermentation and production performance effects. A literature search was conducted to select in vivo studies where information on rumen fermentation and animal performance was reported. For dairy cattle, we identified 37 studies of which 21 were adequate to test production performance. Ten studies reported increases and 3 decreases in milk yield. For beef cattle, we identified 20 studies with rumen fermentation profile and 22 with performance data. Average daily gain improved in 7 and decreased in 1 study. Only 1 out of 16 studies reported an improvement in feed efficiency. Data indicate that out of more than 500 products tested in vitro, only around 20 have been tested in vivo in different mixtures and doses. The use of statistical approaches will allow to describe the conditions, doses and responses in dairy and beef cattle performance. The search for postruminal effects offers another alternative use. Evidence for effects on the intestinal and systemic effects on the immune system and antioxidant status (i.e., capsicum, garlic, eugenol, cinnamaldehyde curcuma, catechins, anethol or pinene), and in the modulation of metabolic regulation (capsicum, cinnamaldehyde, curcuma or garlic) may open the opportunity for future applications. However, stability of the product in the GI tract, description of the mechanisms of action and the impact of these changes on performance needs to be further demonstrated.


2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


Sign in / Sign up

Export Citation Format

Share Document