scholarly journals Efficacy of fungicides and essential oils against bacterial diseases of fruit trees

2012 ◽  
Vol 52 (4) ◽  
pp. 467-471 ◽  
Author(s):  
Artur Mikiciński ◽  
Piotr Sobiczewski ◽  
Stanisław Berczyński

Abstract In the framework of the performed studies, the antibacterial activity of the following fungicides was evaluated: Miedzian 50 WG (active substance - a.s. 50% copper oxychloride), Ridomil MZ Gold 68 WG (a.s. 3.8% metalaxyl-M and 64%, mancozeb), Euparen Multi 50 WG (a.s. 50% tolylfluanid), Captan 80 WG [a.s. 80% N-(captan)], Dithane Neotec 75 WG (a.s. 75% mancozeb). The evaluation also concerned the essential oils: lavender, sage, lemon balm, clove, and a preparation based on thyme oil (BioZell). Each preparation and compound was tested against the following bacterial pathogens: Erwinia amylovora, Xanthomonas arboricola pv. corylina, X. arboricola pv. juglandis, Pseudomonas syringae pv. syringae, Agrobacterium tumefaciens (presently Rhizobium radiobacter). Each preparation and compound was tested at a concentration of 1,000 ppm of active substance. Copper oxychloride was also tested at a concentration of 1,500 ppm. Among the tested fungicides, metalaxyl-M with mancozeb, mancozeb alone, and copper oxychloride inhibited all of the tested strains of pathogenic bacteria. Tolylfluanid did not inhibit any of the bacteria used. Out of the investigated essential oils, the strongest inhibitors of bacteria were: sage, cloves, and BioZell. The protective activity of the above mentioned fungicides was also evaluated in vivo. They were assessed against fire blight on apple blossoms and pear fruitlets, against bacterial canker on sweet cherry fruitlets, and against crown gall on sunflower seedlings (the test plant). All fungicides were applied at the same concentrations as those in the in vitro tests. Only copper oxychloride was found to show protective activity against the studied diseases. This result indicates that the antibacterial properties of the other fungicides did not correspond with their activity on the plant organs used in the in vivo experiment.

2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


Author(s):  
N.M. Devyatkina ◽  
N.O. Bobrova ◽  
E.M. Vazhnichaya

The oral cavity contains a large number of bacteria, some of which are involved in the development of caries and periodontitis (S. mutans, S. sobrinus, Lactobacilli spp, P. intermedia, P. gingivalis, and T. forythus). The disadvantages of existing antiseptics used in dentistry necessitate the study of antibacterial properties of herbal medicines, and, in particular, of essential oils. The aim of this review is to provide the analysis of literature sources from PubMed and Google Scholar databases related to the effects of essential oils of cloves, mint, thyme, eucalyptus, tea tree and their components on cariogenic and periodontopathic microflora. It was found out that the most in vitro studies evaluated the effects of essential oils or isolated compounds (eugenol, menthol, thymol, carvacrol, eucalyptol, and terpinene-4-ol) on S. mutans, which is considered to be the most cariogenic of oral streptococci, and the researchers limited to defining the susceptibility of the microorganism and effects on biofilm formation. Only in a few studies, the effects of essential oils on the virulence factors of oral pathogens, in particular glycosyl transferase, are represented. Clinical trials of essential oils, their components and combinations confirm the therapeutic potential of these agents in vivo, but raise the question of their effectiveness, taking into account the short-term action, which does not exceed the potency of chlorhexidine. Essential oils of cloves, mint, thyme, eucalyptus, tea tree and their components should be used for treating caries and periodontitis. They are also promising when used as agents of the oral care products, preservatives of the dental medicinal forms, and as remedies for halitosis. With a rational prescription, essential oils can be useful in improving the quality of dental treatment and preventive procedures.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Mustafa Akbaba ◽  
Hatice Ozaktan

Abstract Background Bacterial canker and subsequent gummosis are caused by multiple pathogens and lead to significant yield and productivity losses in sweet cherry cultivation in Turkey. This study identified that Pseudomonas syringae pathovars were responsible for bacterial canker on sweet cherry orchards by using classical and molecular methods and evaluated the biocontrol effects of bacteriophages against P. syringae pv. syringae. Results Pathogenic bacteria were isolated from samples taken from plants showing symptoms of bacterial canker in cherry orchards located in İzmir and Manisa provinces. Specific pathogens were identified using pathogenicity, phenotypic tests, and simplex PCR. Bacteriophages effective against P. syringae strains were isolated from soil contaminated with pathogens identified in the diseased orchards using an optimized isolation protocol. The biocontrol activity of bacteriophage isolates against P. syringae pv. syringae was tested in vitro and in vivo. The results of pathogenicity tests on immature sweet cherry fruits and micropropagated cherry plantlets revealed 10 pathogenic bacteria isolates from 44 plant samples taken from sweet cherry orchards showing symptoms of bacterial canker. Conclusions Ten isolates were identified as Pseudomonas syringae pv. syringae. Nine different pure bacteriophage isolates were effective. The results indicated that bacteriophage isolates may demonstrate variable reactivity against P. syringae pathovars.


Author(s):  
Abolfazl Jafari Sales ◽  
Afsoon Shariat

Introduction: Nowadays, with the increase of resistance due to overuse of synthetic chemical antibiotics, it seems necessary to find alternative drugs. The aim of this study was to compare the effects of silver nanoparticles and Eucalyptus globules (eucalyptus) ethanolic extract on standard bacteria of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa and Escherichia coli. Material and Methods: In this experimental study, aerial parts of Eucalyptus plant were collected from Marand city and identified as Eucalyptus plant by botanists of Islamic Azad University, Ahar Branch. In this study, eucalyptus ethanolic extract was prepared by Soxhlet method and the antibacterial effects of eucalyptus extract at concentrations of 20, 30, 50 and 400 mg / ml and silver nanoparticles at concentrations of 10, 20, 40 and 80 μg / ml with agar well diffusion methods and tubular dilution were investigated. Results: The results showed that the ethanolic extract of Eucalyptus had more antibacterial properties compared to silver nanoparticles. Eucalyptus extract and silver nanoparticles had a greater effect on gram-positive bacteria. The effect of the combination of eucalyptus extract and silver nanoparticles was much greater than the effect of either. Conclusion: The results showed that silver nanoparticles in combination with eucalyptus extract have good antimicrobial activity against pathogenic bacteria. Therefore, this extract along with silver nanoparticles can be a good option for future studies in vivo to prepare antibacterial drugs.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 185 ◽  
Author(s):  
Mahmoud A. O. Dawood ◽  
Mohammed F. El Basuini ◽  
Amr I. Zaineldin ◽  
Sevdan Yilmaz ◽  
Md. Tawheed Hasan ◽  
...  

Using synthetic antibiotics/chemicals for infectious bacterial pathogens and parasitic disease control causes beneficial microbial killing, produces multi-drug resistant pathogens, and residual antibiotic impacts in humans are the major threats to aquaculture sustainability. Applications of herbal products to combat microbial and parasitic diseases are considered as alternative approaches for sustainable aquaculture. Essential oils (EOs) are the secondary metabolites of medicinal plants that possess bioactive compounds like terpens, terpenoids, phenylpropenes, and isothiocyanates with synergistic relationship among these compounds. The hydrophobic compounds of EOs can penetrate the bacterial and parasitic cells and cause cell deformities and organelles dysfunctions. Dietary supplementation of EOs also modulate growth, immunity, and infectious disease resistance in aquatic organisms. Published research reports also demonstrated EOs effectiveness against Ichthyophthirius multifiliis, Gyrodactylus sp., Euclinostomum heterostomum, and other parasites both in vivo and in vitro. Moreover, different infectious fish pathogenic bacteria like Aeromonas salmonicida, Vibrio harveyi, and Streptococcus agalactiae destruction was confirmed by plant originated EOs. However, no research was conducted to confirm the mechanism of action or pathway identification of EOs to combat aquatic parasites and disease-causing microbes. This review aims to explore the effectiveness of EOs against fish parasites and pathogenic bacteria as an environment-friendly phytotherapeutic in the aquaculture industry. Moreover, research gaps and future approaches to use EOs for sustainable aquaculture practice are also postulated.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2812
Author(s):  
Meng Zhang ◽  
Dong Wang ◽  
Nana Ji ◽  
Shaoxiang Lee ◽  
Guohui Wang ◽  
...  

Due to the spread of drug-resistant bacteria in hospitals, the development of antibacterial dressings has become a strategy to control wound infections caused by bacteria. Here, we reported a green strategy for in situ biomimetic syntheses of silver nanoparticles@organic frameworks/graphene oxide (Ag@MOF–GO) in sericin/chitosan/polyvinyl alcohol hydrogel. Ag@MOF–GO was synthesized in situ from the redox properties of tyrosine residues in silk sericin without additional chemicals, similar to a biomineralization process. The sericin/chitosan/Ag@MOF–GO dressing possessed a high porosity, good water retention, and a swelling ratio. The hemolysis rate of the composite was 3.9% and the cell viability rate was 131.2%, which indicated the hydrogel possessed good biocompatibility. The composite also showed excellent lasting antibacterial properties against drug-sensitive and drug-resistant pathogenic bacteria. The composite possessed excellent hemostatic activity. The coagulation effect of the composite may be related to its effect on the red blood cells and platelets, but it has nothing to do with the activation of coagulation factors. An in vitro cell migration assay confirmed and an in vivo evaluation of mice indicated that the composite could accelerate wound healing and re-epithelialization. In summary, the composite material is an ideal dressing for accelerating hemostasis, preventing bacterial infection, and promoting wound healing.


Author(s):  
Hai Thanh Nguyen ◽  
Lua Thi Dang ◽  
Hanh Thi Nguyen ◽  
Hai Ha Hoang ◽  
Ha Thi Ngoc Lai ◽  
...  

Objectives: The objectives are aimed to investigate the antibacterial properties of five Vietnamese medicinal plants against acute hepatopancreatic necrosis disease (AHPND)-caused bacterial pathogens, to verify their potentials to apply as a new treatment therapy.Methods: Extracts from plants, such as Psidium guajava leaf, Piper betle L. leaf, Phyllanthus amarus leaf, Rhodomyrtus tomentosa seed, and Allium sativum bulb, were tested against three AHPND-caused bacteria. Agar infusion and broth dilution methods were employed to evaluate extract in vitro antibacterial effects, while experiments with cultured whiteleg shrimps were applied to access their safety when applied in vivo. High-performance liquid chromatography (HPLC) analysis was applied to identify components in the extracts.Results: P. amanus and R. tomentosa extracts exerted the strongest inhibition on tested bacteria. Other extracts, including P. betel and P. guajava, were less effective, while A. sativum showed no effects against bacteria. In safety assessment experiments, we observed that only crude extracts of R. tomentosa and A. satium were safe, while others significantly reduced their survival rates. HPLC showed that extracts of high antibacterial properties had rich phenol constituents. In addition, the phenolic profile of R. tomentosa showed the presence of piceatannol.Conclusion: Considering both of antibacterial effects and safety properties altogether, we concluded that among the five examined plant materials of this study, R. tomentosa had the highest potential to apply in AHPND treatment, as only this plant showed the high effects on pathogenic bacteria while were still safe for host aquatic shrimps.


2020 ◽  
Vol 46 (3) ◽  
pp. 1-9
Author(s):  
Esin BABA ◽  

The use of natural products which have the least harmful effects on the environment has recently been taken as a novel approach against fish diseases. References on in vitro studies have demonstrated antibacterial activity of essential oils (EOs) against certain fish pathogens. The aim of this study was to evaluate the antibacterial effect of some plant essential oils against fish pathogenic bacteria in vitro conditions. Seven plant EOs: lavender (Lavandula angustifolia), clove (Eugenia caryophyllus), peppermint (Mentha piperitae), basil (Ocimum sanctum), rosemary (Rosmarinus officinalis), cinnamon (Cinnamomum zeylanicum) and black cumin (Nigella sativa) were used to identify their antibacterial properties against Yersinia ruckeri, Aeromonas hydrophila, Vibrio anguillarum, Vibrio alginolyticus, Lactococcus garvieae and Vagococcus salmoninarum at five concentrations using disc diffusion method. Especially the EOs of clove, cinnamon and rosemary showed the strongest antibacterial activities than other oils against the three most susceptible bacterial strains (Y. ruckeri, A. hydrophila and V. salmoninarum). Besides, the EOs of clove, rosemary, cinnamon and black cumin showed similar inhibition zones with OTC against A. hydrophila. The minimum inhibitory concentrations of the used EOs found between 500 and 62.5 µl mL-1. As a result, three of the EOs used in this study were effective on both Gr (-) and Gr (+) bacteria.


2018 ◽  
Vol 33 (3-4) ◽  
pp. 185-195 ◽  
Author(s):  
Tatjana Popovic ◽  
Zoran Milicevic ◽  
Violeta Oro ◽  
Igor Kostic ◽  
Vesela Radovic ◽  
...  

Numerous scientific research studies all over the world have addressed the problem of agriculture in the 21st century as being particularly sensitive to climate change, which has caused phytopathogenic bacteria to spread. Therefore, there is a clear and urgent need to contain this kind of risk in agricultural production (both conventional and organic farming). The objective of this study was to determine the antibacterial activity of 30 essential oils (EOs) against three harmful plant pathogenic bacteria of agricultural importance, Erwinia amylovora, Xanthomonas campestris pv. campestris and Pseudomonas syringae pv. syringae. The study included in vitro testing, using an agar-diffusion assay. The EOs of Ceylon cinnamon (leaf and bark), oregano, clove bud and palmarosa revealed antibacterial activity against the test bacteria, and the maximum mean inhibition zone diameters of 35 mm was found against E. amylovora and X. campestris pv. campestris (highly sensitive reaction), while it was smaller in the case of P. syringae pv. syringae, from 18.25-26.25 mm (sensitive to very sensitive reaction). Maximum diameter of the zone of inhibition (35 mm) was obtained using basil and peppermint against E. amylovora, and rosemary, blue gum and camphor tree against X. campestris pv. campestris. Not a single EO inhibited P. syringae pv. syringae with the resulting total diameter zone of 35 mm, and this test bacteria was resultingly classified as the least susceptible bacterium of the three tested. EOs of lemongrass, aniseed, ylang ylang, silver fir, lemon, dwarf mountain pine, bay laurel and scots pine caused sensitive reaction of the tested bacteria. Peppermint, black cumin, Indian frankincense, bergamot orange, common juniper, bitter orange and neem produced variable reactions from total to weakly or no inhibition at all. Weakly activity was found in niaouli and Atlas cedar. Eastern red cedar, patchouli, Indian sandalwood and ginger caused no reaction of any of the test bacteria. The results offer a basis for further work based on in vivo testing for the purpose of developing ?natural pesticides? for control of phytopathogenic bacteria, thus giving a significant contribution to reducing yield losses in agriculture and sustainable development.


Sign in / Sign up

Export Citation Format

Share Document