scholarly journals Molecular Pathology Analysis of SARS-CoV-2 in Syncytiotrophoblast and Hofbauer Cells in Placenta from a Pregnant Woman and Fetus with COVID-19

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 479
Author(s):  
Denise Morotti ◽  
Massimiliano Cadamuro ◽  
Elena Rigoli ◽  
Aurelio Sonzogni ◽  
Andrea Gianatti ◽  
...  

A small number of neonates delivered to women with SARS-CoV-2 infection have been found to become infected through intrauterine transplacental transmission. These cases are associated with a group of unusual placental pathology abnormalities that include chronic histiocytic intervillositis, syncytiotrophoblast necrosis, and positivity of the syncytiotrophoblast for SARS-CoV-2 antigen or RNA. Hofbauer cells constitute a heterogeneous group of immunologically active macrophages that have been involved in transplacental infections that include such viral agents as Zika virus and human immunodeficiency virus. The role of Hofbauer cells in placental infection with SARS-CoV-2 and maternal-fetal transmission is unknown. This study uses molecular pathology techniques to evaluate the placenta from a neonate infected with SARS-CoV-2 via the transplacental route to determine whether Hofbauer cells have evidence of infection. We found that the placenta had chronic histiocytic intervillositis and syncytiotrophoblast necrosis, with the syncytiotrophoblast demonstrating intense positive staining for SARS-CoV-2. Immunohistochemistry using the macrophage marker CD163, SARS-CoV-2 nucleocapsid protein, and double staining for SARS-CoV-2 with RNAscope and anti-CD163 antibody, revealed that no demonstrable virus could be identified within Hofbauer cells, despite these cells closely approaching the basement membrane zone of the infected trophoblast. Unlike some other viruses, there was no evidence from this transmitting placenta for infection of Hofbauer cells with SARS-CoV-2.

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 554
Author(s):  
Natália Salomão ◽  
Michelle Brendolin ◽  
Kíssila Rabelo ◽  
Mayumi Wakimoto ◽  
Ana Maria de Filippis ◽  
...  

Intrauterine transmission of the Chikungunya virus (CHIKV) during early pregnancy has rarely been reported, although vertical transmission has been observed in newborns. Here, we report four cases of spontaneous abortion in women who became infected with CHIKV between the 11th and 17th weeks of pregnancy. Laboratorial confirmation of the infection was conducted by RT-PCR on a urine sample for one case, and the other three were by detection of IgM anti-CHIKV antibodies. Hematoxylin and eosin (H&E) staining and an electron microscopy assay allowed us to find histopathological, such as inflammatory infiltrate in the decidua and chorionic villi, as well as areas of calcification, edema and the deposition of fibrinoid material, and ultrastructural changes, such as mitochondria with fewer cristae and ruptured membranes, endoplasmic reticulum with dilated cisterns, dispersed chromatin in the nuclei and the presence of an apoptotic body in case 1. In addition, by immunohistochemistry (IHC), we found a positivity for the anti-CHIKV antibody in cells of the endometrial glands, decidual cells, syncytiotrophoblasts, cytotrophoblasts, Hofbauer cells and decidual macrophages. Electron microscopy also helped in identifying virus-like particles in the aborted material with a diameter of 40–50 nm, which was consistent with the size of CHIKV particles in the literature. Our findings in this study suggest early maternal fetal transmission, adding more evidence on the role of CHIKV in fetal death.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 5 ◽  
Author(s):  
Jae Kyung Lee ◽  
Soo-Jin Oh ◽  
Hosun Park ◽  
Ok Sarah Shin

The placenta is a unique mixed organ, composed of both maternal and fetal tissues, that is formed only during pregnancy and serves as the key physiological and immunological barrier preventing maternal–fetal transmission of pathogens. Several viruses can circumvent this physical barrier and enter the fetal compartment, resulting in miscarriage, preterm birth, and birth defects, including microcephaly. The mechanisms underlying viral strategies to evade the protective role of placenta are poorly understood. Here, we reviewed the role of trophoblasts and Hofbauer cells in the placenta and have highlighted characteristics of vertical and perinatal infections caused by a wide range of viruses. Moreover, we explored current progress and future opportunities in cellular targets, pathogenesis, and underlying biological mechanisms of congenital viral infections, as well as novel research models and tools to study the placenta.


2019 ◽  
Vol 11 (6) ◽  
pp. 447-456 ◽  
Author(s):  
Michael Z. Zulu ◽  
Fernando O. Martinez ◽  
Siamon Gordon ◽  
Clive M. Gray

In this review, we discuss the often overlooked tissue-resident fetal macrophages, Hofbauer cells, which are found within the chorionic villi of the human placenta. Hofbauer cells have been shown to have a phenotype associated with regulatory and anti-inflammatory functions. They are thought to play a crucial role in the regulation of pregnancy and in the maintenance of a homeostatic environment that is crucial for fetal development. Even though the numbers of these macrophages are some of the most abundant immune cells in the human placenta, which are sustained throughout pregnancy, there are very few studies that have identified their origin, their phenotype, and functions and why they are maintained throughout gestation. It is not yet understood how Hofbauer cells may change in function throughout normal pregnancy, and especially in those complicated by maternal gestational diabetes, preeclampsia, and viral infections, such as Zika, cytomegalovirus, and human immunodeficiency virus. We review what is known about the origin of these macrophages and explore how common complications of pregnancy dysregulate these cells leading to adverse birth outcomes in humans. Our synthesis sheds light on areas for human studies that can further define these innate regulatory cells.


Author(s):  
David A. Schwartz ◽  
Marcella Baldewijns ◽  
Alexandra Benachi ◽  
Mattia Bugatti ◽  
Gaetano Bulfamante ◽  
...  

Context.– Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can undergo maternal-fetal transmission, heightening interest in the placental pathology findings from this infection. Transplacental SARS-CoV-2 transmission is typically accompanied by chronic histiocytic intervillositis together with necrosis and positivity of syncytiotrophoblast for SARSCoV-2. Hofbauer cells are placental macrophages that have been involved in viral diseases including HIV and Zika virus, but their involvement in SARS-CoV-2 in unknown. Objective.– To determine whether SARS-CoV-2 can extend beyond the syncytiotrophoblast to enter Hofbauer cells, endothelium and other villous stromal cells in infected placentas of liveborn and stillborn infants. Design.– Case-based retrospective analysis by 29 perinatal and molecular pathology specialists of placental findings from a preselected cohort of 22 SARS-CoV-2-infected placentas delivered to pregnant women testing positive for SARS-CoV-2 from 7 countries. Molecular pathology methods were used to investigate viral involvement of Hofbauer cells, villous capillary endothelium, syncytiotrophoblast and other fetal-derived cells. Results.– Chronic histiocytic intervillositis and trophoblast necrosis was present in all 22 placentas (100%). SARS-CoV-2 was identified in Hofbauer cells from 4/22 placentas (18%). Villous capillary endothelial staining was positive in 2/22 cases (9%), both of which also had viral positivity in Hofbauer cells. Syncytiotrophoblast staining occurred in 21/22 placentas (95%). Hofbauer cell hyperplasia was present in 3/22 placentas (14%). In the 7 cases having documented transplacental infection of the fetus, 2 occurred in placentas with Hofbauer cell staining positive for SARS-CoV-2. Conclusions.– SARS-CoV-2 can extend beyond the trophoblast into the villous stroma, involving Hofbauer cells and capillary endothelial cells, in a small number of infected placentas. Most cases of SARS-CoV-2 transplacental fetal infection occur without Hofbauer cell involvement.


2021 ◽  
Vol 9 (3) ◽  
pp. 33
Author(s):  
David A. Schwartz ◽  
Mattia Bugatti ◽  
Amerigo Santoro ◽  
Fabio Facchetti

A subset of placentas from pregnant women having the SARS-CoV-2 infection have been found to be infected with the coronavirus using molecular pathology methods including immunohistochemistry and RNA in situ hybridization. These infected placentas can demonstrate several unusual findings which occur together—chronic histiocytic intervillositis, trophoblast necrosis and positive staining of the syncytiotrophoblast for SARS-CoV-2. They frequently also have increased fibrin deposition, which can be massive in some cases. Syncytiotrophoblast is the most frequent fetal-derived cell type to be positive for SARS-CoV-2. It has recently been shown that in a small number of infected placentas, villous stromal macrophages, termed Hofbauer cells, and villous capillary endothelial cells can also stain positive for SARS-CoV-2. This report describes a placenta from a pregnant woman with SARS-CoV-2 that had chronic histiocytic intervillositis, trophoblast necrosis, increased fibrin deposition and positive staining of the syncytiotrophoblast for SARS-CoV-2. In addition, molecular pathology testing including RNAscope and immunohistochemistry for SARS-CoV-2 and double-staining immunohistochemistry using antibodies to E-cadherin and GATA3 revealed that cytotrophoblast cells stained intensely for SARS-CoV-2. All of the cytotrophoblast cells that demonstrated positive staining for SARS-CoV-2 were in direct physical contact with overlying syncytiotrophoblast that also stained positive for the virus. The pattern of cytotrophoblast staining for SARS-CoV-2 was patchy, and there were chorionic villi having diffuse positive staining of the syncytiotrophoblast for SARS-CoV-2, but without staining of cytotrophoblast. This first detailed description of cytotrophoblast involvement by SARS-CoV-2 adds another fetal cell type from infected placentas that demonstrate viral staining.


2020 ◽  
pp. 5-13
Author(s):  
L. Guseva

The article considers urgent problem of modern society – progressive increase in the number of people infected with the human immunodeficiency virus (HIV). Epidemiological characteristics of the pathogen are given, clinical signs of the disease and a modern strategy aimed at reducing the number of infected people are presented. The role of specialists with secondary medical education in the implementation of the Strategy aimed at combating the spread of HIV infection epidemic in the Russian Federation is emphasized.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Sergio Gastón Caspe ◽  
Javier Palarea-Albaladejo ◽  
Clare Underwood ◽  
Morag Livingstone ◽  
Sean Ranjan Wattegedera ◽  
...  

Chlamydia abortus infects livestock species worldwide and is the cause of enzootic abortion of ewes (EAE). In Europe, control of the disease is achieved using a live vaccine based on C. abortus 1B strain. Although the vaccine has been useful for controlling disease outbreaks, abortion events due to the vaccine have been reported. Recently, placental pathology resulting from a vaccine type strain (vt) infection has been reported and shown to be similar to that resulting from a natural wild-type (wt) infection. The aim of this study was to extend these observations by comparing the distribution and severity of the lesions, the composition of the predominating cell infiltrate, the amount of bacteria present and the role of the blood supply in infection. A novel system for grading the histological and pathological features present was developed and the resulting multi-parameter data were statistically transformed for exploration and visualisation through a tailored principal component analysis (PCA) to evaluate the difference between them. The analysis provided no evidence of meaningful differences between vt and wt strains in terms of the measured pathological parameters. The study also contributes a novel methodology for analysing the progression of infection in the placenta for other abortifacient pathogens.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 446
Author(s):  
Kevin M. Rose ◽  
Stephanie J. Spada ◽  
Rebecca Broeckel ◽  
Kristin L. McNally ◽  
Vanessa M. Hirsch ◽  
...  

An evolutionary arms race has been ongoing between retroviruses and their primate hosts for millions of years. Within the last century, a zoonotic transmission introduced the Human Immunodeficiency Virus (HIV-1), a retrovirus, to the human population that has claimed the lives of millions of individuals and is still infecting over a million people every year. To counteract retroviruses such as this, primates including humans have evolved an innate immune sensor for the retroviral capsid lattice known as TRIM5α. Although the molecular basis for its ability to restrict retroviruses is debated, it is currently accepted that TRIM5α forms higher-order assemblies around the incoming retroviral capsid that are not only disruptive for the virus lifecycle, but also trigger the activation of an antiviral state. More recently, it was discovered that TRIM5α restriction is broader than previously thought because it restricts not only the human retroelement LINE-1, but also the tick-borne flaviviruses, an emergent group of RNA viruses that have vastly different strategies for replication compared to retroviruses. This review focuses on the underlying mechanisms of TRIM5α-mediated restriction of retroelements and flaviviruses and how they differ from the more widely known ability of TRIM5α to restrict retroviruses.


Sign in / Sign up

Export Citation Format

Share Document