scholarly journals Inactivation of Scrapie Prions by the Electrically Charged Disinfectant CAC-717

Pathogens ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 536 ◽  
Author(s):  
Akikazu Sakudo ◽  
Yoshifumi Iwamaru ◽  
Koichi Furusaki ◽  
Makoto Haritani ◽  
Rumiko Onishi ◽  
...  

Previous studies have revealed that the electrically charged disinfectant CAC-717 has strong virucidal and bactericidal effects but is safe for humans and animals. In this study, CAC-717 was further evaluated for its potential effects as a disinfectant against scrapie prions. Western blotting showed that CAC-717 reduced the amount of the abnormal isoform of prion protein (PrPSc) in prion-infected cell (ScN2a) lysates. Furthermore, the reduction of prion transmissibility was confirmed by a mouse bioassay, in which mice injected with scrapie prions pre-treated with CAC-717 survived longer than those injected with untreated scrapie prions. Lastly, to evaluate the seeding activity of ScN2a cell lysates treated with CAC-717, quantitative protein misfolding cyclic amplification (PMCA) was performed directly on ScN2a cell lysates treated with CAC-717, which showed that the median dose of PMCA (PMCA50) dropped from log9.95 to log5.20 after CAC-717 treatment, indicating more than a 4 log reduction. This suggests that the seeding activity of PrPSc is decreased by CAC-717. Collectively, these results suggest that CAC-717 has anti-prion activity, reducing both PrPSc conversion activity and prion transmissibility; thus, CAC-717 will be useful as a novel disinfectant in prion diseases.

Author(s):  
Patrick JM Urwin ◽  
Anna M Molesworth

Human prion diseases comprise a number of rare and fatal neurodegenerative conditions that result from the accumulation in the central nervous system of an abnormal form of a naturally occurring protein, called the prion protein. The diseases occur in genetic, sporadic, and acquired forms: genetic disease is associated with mutations in the prion protein gene (PRNP); sporadic disease is thought to result from a spontaneous protein misfolding event; acquired disease results from transmission of infection from an animal or another human. The potential transmissibility of the prion in any of these forms, either in disease states or during the incubation period, has implications for public health. Here we focus on Creutzfeldt-Jakob Disease (CJD), including variant Creutzfeldt-Jakob Disease (vCJD), although we will also discuss other forms of human prion disease.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 947
Author(s):  
Akikazu Sakudo ◽  
Risa Yamashiro ◽  
Chihiro Harata

To date, there have been no studies on the sterilization of prions by non-concentrated and concentrated vaporized hydrogen peroxide (VHP) applied by the same instrument. Here, the effect of the two types of VHP applied using an ES-700 sterilizer on prions was investigated. Brain homogenate from scrapie (Chandler) prion-infected mice was spotted on a cover glass and subjected to ES-700 treatment in soft (non-concentrated VHP from 59% hydrogen peroxide) or standard (concentrated VHP from 80% hydrogen peroxide) mode. Proteinase K-resistant prion protein (PrPres), an indicator of the abnormal isoform of prion protein (PrPSc), was reduced by ES-700 treatment under several conditions: SFT1/4 (soft mode, quarter cycle), SFT1/2 (soft mode, half cycle), SFT1 (soft mode, full cycle), and STD1/2 (standard mode, half cycle). PrPres was detected after the first and second rounds of protein misfolding cyclic amplification (PMCA) of untreated samples, but was undetectable in SFT1/4, SFT1/2, SFT1, and STD1/2 treated samples. In a mouse bioassay, SFT1/2 and STD1/2 treatment of prions significantly prolonged survival time, suggesting that prion infectivity is reduced after ES-700 treatment. In summary, both non-concentrated and concentrated VHP inactivate prions and may be useful for the low-temperature sterilization of prion-contaminated medical devices.


2016 ◽  
Vol 90 (23) ◽  
pp. 10752-10761 ◽  
Author(s):  
Kristen A. Davenport ◽  
Davin M. Henderson ◽  
Candace K. Mathiason ◽  
Edward A. Hoover

ABSTRACT Chronic wasting disease (CWD) in cervids and bovine spongiform encephalopathy (BSE) in cattle are prion diseases that are caused by the same protein-misfolding mechanism, but they appear to pose different risks to humans. We are interested in understanding the differences between the species barriers of CWD and BSE. We used real-time, quaking-induced conversion (RT-QuIC) to model the central molecular event in prion disease, the templated misfolding of the normal prion protein, PrP c , to a pathogenic, amyloid isoform, scrapie prion protein, PrP Sc . We examined the role of the PrP c amino-terminal domain (N-terminal domain [NTD], amino acids [aa] 23 to 90) in cross-species conversion by comparing the conversion efficiency of various prion seeds in either full-length (aa 23 to 231) or truncated (aa 90 to 231) PrP c . We demonstrate that the presence of white-tailed deer and bovine NTDs hindered seeded conversion of PrP c , but human and bank vole NTDs did the opposite. Additionally, full-length human and bank vole PrP c s were more likely to be converted to amyloid by CWD prions than were their truncated forms. A chimera with replacement of the human NTD by the bovine NTD resembled human PrP c . The requirement for an NTD, but not for the specific human sequence, suggests that the NTD interacts with other regions of the human PrP c to increase promiscuity. These data contribute to the evidence that, in addition to primary sequence, prion species barriers are controlled by interactions of the substrate NTD with the rest of the substrate PrP c molecule. IMPORTANCE We demonstrate that the amino-terminal domain of the normal prion protein, PrP c , hinders seeded conversion of bovine and white-tailed deer PrP c s to the prion forms, but it facilitates conversion of the human and bank vole PrP c s to the prion forms. Additionally, we demonstrate that the amino-terminal domain of human and bank vole PrP c s requires interaction with the rest of the molecule to facilitate conversion by CWD prions. These data suggest that interactions of the amino-terminal domain with the rest of the PrP c molecule play an important role in the susceptibility of humans to CWD prions.


2020 ◽  
Vol 21 (19) ◽  
pp. 7260
Author(s):  
Keiji Uchiyama ◽  
Hironori Miyata ◽  
Yoshitaka Yamaguchi ◽  
Morikazu Imamura ◽  
Mariya Okazaki ◽  
...  

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91–106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91–106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91–106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91–106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91–106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91–104 after incubation with BSE-PrPSc-prions but not with RML- and 22L–PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91–104 into PrPSc∆91–104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91–106 or 91–104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


2006 ◽  
Vol 17 (8) ◽  
pp. 3356-3368 ◽  
Author(s):  
Angelika S. Rambold ◽  
Margit Miesbauer ◽  
Doron Rapaport ◽  
Till Bartke ◽  
Michael Baier ◽  
...  

Protein misfolding is linked to different neurodegenerative disorders like Alzheimer’s disease, polyglutamine, and prion diseases. We investigated the cytotoxic effects of aberrant conformers of the prion protein (PrP) and show that toxicity is specifically linked to misfolding of PrP in the cytosolic compartment and involves binding of PrP to the anti-apoptotic protein Bcl-2. PrP targeted to different cellular compartments, including the cytosol, nucleus, and mitochondria, adopted a misfolded and partially proteinase K–resistant conformation. However, only in the cytosol did the accumulation of misfolded PrP induce apoptosis. Apoptotic cell death was also induced by two pathogenic mutants of PrP, which are partially localized in the cytosol. A mechanistic analysis revealed that the toxic potential is linked to an internal domain of PrP (amino acids 115–156) and involves coaggregation of cytosolic PrP with Bcl-2. Increased expression of the chaperones Hsp70 and Hsp40 prevented the formation of PrP/Bcl-2 coaggregates and interfered with PrP-induced apoptosis. Our study reveals a compartment-specific toxicity of PrP misfolding that involves coaggregation of Bcl-2 and indicates a protective role of molecular chaperones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideyuki Hara ◽  
Junji Chida ◽  
Keiji Uchiyama ◽  
Agriani Dini Pasiana ◽  
Etsuhisa Takahashi ◽  
...  

AbstractMisfolding of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, which forms infectious protein aggregates, the so-called prions, is a key pathogenic event in prion diseases. No pathogens other than prions have been identified to induce misfolding of PrPC into PrPSc and propagate infectious prions in infected cells. Here, we found that infection with a neurotropic influenza A virus strain (IAV/WSN) caused misfolding of PrPC into PrPSc and generated infectious prions in mouse neuroblastoma cells through a hit-and-run mechanism. The structural and biochemical characteristics of IAV/WSN-induced PrPSc were different from those of RML and 22L laboratory prions-evoked PrPSc, and the pathogenicity of IAV/WSN-induced prions were also different from that of RML and 22L prions, suggesting IAV/WSN-specific formation of PrPSc and infectious prions. Our current results may open a new avenue for the role of viral infection in misfolding of PrPC into PrPSc and formation of infectious prions.


2021 ◽  
Author(s):  
Luise Linsenmeier ◽  
Behnam Mohammadi ◽  
Mohsin Shafiq ◽  
Karl Frontzek ◽  
Julia Baer ◽  
...  

The cellular prion protein (PrPC) is a central player in neurodegenerative diseases caused by protein misfolding, such as prion diseases or Alzheimer's disease (AD). Expression levels of this GPI-anchored glycoprotein, especially at the neuronal cell surface, critically correlate with various pathomechanistic aspects underlying these diseases, such as templated misfolding (in prion diseases) and neurotoxicity and, hence, with disease progression and severity. In stark contrast to cell-associated PrPC, soluble extracellular forms or fragments of PrP are linked with neuroprotective effects, which is likely due to their ability to interfere with neurotoxic disease-associated protein conformers in the interstitial fluid. Fittingly, the endogenous proteolytic release of PrPC by the metalloprotease ADAM10 ('shedding') was characterized as a protective mechanism. Here, using a recently generated cleavage-site specific antibody, we shed new light on earlier studies by demonstrating that shed PrP (sPrP) negatively correlates with conformational conversion (in prion disease) and is markedly redistributed in murine brain in the presence of prion deposits or AD-associated amyloid plaques indicating a blocking and sequestrating activity. Importantly, we reveal that administration of certain PrP-directed antibodies and other ligands results in increased PrP shedding in cells and organotypic brain slice cultures. We also provide mechanistic and structural insight into this shedding-stimulating effect. In addition, we identified a striking exception to this, as one particular neuroprotective antibody, due to its special binding characteristics, did not cause increased shedding but rather strong surface clustering followed by fast endocytosis and degradation of PrPC. Both mechanisms may contribute to the beneficial action described for some PrP-directed antibodies/ligands and pave the way for new therapeutic strategies against devastating and currently incurable neurodegenerative diseases.


Author(s):  
Mingxuan Ding ◽  
Kenta Teruya ◽  
Weiguanliu Zhang ◽  
Hae Weon Lee ◽  
Jue Yuan ◽  
...  

AbstractPrevious studies have revealed that the infectious scrapie isoform of prion protein (PrPSc) harbored in the skin tissue of patients or animals with prion diseases can be amplified and detected through the serial protein misfolding cyclic amplification (sPMCA) or real-time quaking-induced conversion (RT-QuIC) assays. These findings suggest that skin PrPSc-seeding activity may serve as a biomarker for the diagnosis of prion diseases; however, its utility as a biomarker for prion therapeutics remains largely unknown. Cellulose ethers (CEs, such as TC-5RW), widely used as food and pharmaceutical additives, have recently been shown to prolong the lifespan of prion-infected mice and hamsters. Here we report that in transgenic (Tg) mice expressing hamster cellular prion protein (PrPC) infected with the 263K prion, the prion-seeding activity becomes undetectable in the skin tissues of TC-5RW-treated Tg mice by both sPMCA and RT-QuIC assays, whereas such prion-seeding activity is readily detectable in the skin of untreated mice. Notably, TC-5RW exhibits an inhibitory effect on the in vitro amplification of PrPSc in both skin and brain tissues by sPMCA and RT-QuIC. Moreover, we reveal that TC-5RW is able to directly decrease protease-resistant PrPSc and inhibit the seeding activity of PrPSc from chronic wasting disease and various human prion diseases. Our results suggest that the level of prion-seeding activity in the skin may serve as a useful biomarker for assessing the therapeutic efficacy of compounds in a clinical trial of prion diseases and that TC-5RW may have the potential for the prevention/treatment of human prion diseases.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247248
Author(s):  
Li-Juan Wang ◽  
Xiao-Dan Gu ◽  
Xiao-Xiao Li ◽  
Liang Shen ◽  
Hong-Fang Ji

The conversion of cellular prion protein (PrPC) to disease-provoking conformer (PrPSc) is crucial in the pathogenesis of prion diseases. Heparin has been shown to enhance mammalian prion protein misfolding. As spontaneous prion disease has not been reported in non-mammalian species, such as chicken, it is interesting to explore the influence of heparin on the conversion of chicken prion protein (ChPrP). Herein, we investigated the influences of heparin on biochemical properties of full-length recombinant ChPrP, with murine prion protein (MoPrP) as control. The results showed that at low heparin concentration (10 μg/mL), a great loss of solubility was observed for both MoPrP and ChPrP using solubility assays. In contrast, when the concentration of heparin was high (30 μg/mL), the solubility of MoPrP and ChPrP both decreased slightly. Using circular dichroism, PK digestion and transmission electron microscopy, significantly increased β-sheet content, PK resistance and size of aggregates were observed for MoPrP interacted with 30 μg/mL heparin, whereas 30 μg/mL heparin-treated ChPrP showed less PK resistance and slight increase of β-sheet structure. Therefore, heparin can induce conformational changes in both MoPrP and ChPrP and the biochemical properties of the aggregates induced by heparin could be modified by heparin concentration. These results highlight the importance of concentration of cofactors affecting PrP misfolding.


Author(s):  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
Patricia Aguilar-Calvo ◽  
Sylvie L Benestad ◽  
Olivier Andreoletti ◽  
...  

Abstract Although experimental transmission of bovine spongiform encephalopathy (BSE) to pigs and transgenic mice expressing pig cellular prion protein (PrPC) (porcine PrP [PoPrP]–Tg001) has been described, no natural cases of prion diseases in pig were reported. This study analyzed pig-PrPC susceptibility to different prion strains using PoPrP-Tg001 mice either as animal bioassay or as substrate for protein misfolding cyclic amplification (PMCA). A panel of isolates representatives of different prion strains was selected, including classic and atypical/Nor98 scrapie, atypical-BSE, rodent scrapie, human Creutzfeldt-Jakob-disease and classic BSE from different species. Bioassay proved that PoPrP-Tg001-mice were susceptible only to the classic BSE agent, and PMCA results indicate that only classic BSE can convert pig-PrPC into scrapie-type PrP (PrPSc), independently of the species origin. Therefore, conformational flexibility constraints associated with pig-PrP would limit the number of permissible PrPSc conformations compatible with pig-PrPC, thus suggesting that pig-PrPC may constitute a paradigm of low conformational flexibility that could confer high resistance to the diversity of prion strains.


Sign in / Sign up

Export Citation Format

Share Document