scholarly journals The Cholecystokinin Type 2 Receptor, a Pharmacological Target for Pain Management

2021 ◽  
Vol 14 (11) ◽  
pp. 1185
Author(s):  
Amandine Bernard ◽  
Aurore Danigo ◽  
Sylvie Bourthoumieu ◽  
Mohamad Mroué ◽  
Alexis Desmoulière ◽  
...  

Over the past decades, accumulating evidence has demonstrated a pivotal role of cholecystokinin type 2 receptor (CCK2R) in pain modulation. The established role of CCK2R activation in directly facilitating nociception has led to the development of several CCK2R antagonists, which have been shown to successfully alleviate pain in several rodent models of pain. However, the outcomes of clinical trials are more modest since they have not demonstrated the expected biological effect obtained in animals. Such discordances of results between preclinical and clinical studies suggest reconsidering our knowledge about the molecular basis of the pharmacology and functioning of CCK2R. This review focuses on the cellular localization of CCK2R specifically in the sensory nervous system and discusses in further detail the molecular mechanisms and signal transduction pathways involved in controlling pain perception. We then provide a comprehensive overview of the most successful compounds targeting CCK2R and report recent advances in pharmacological strategies used to achieve CCK2R modulation. We purposely distinguish between CCK2R benefits obtained in preclinical models and outcomes in clinical trials with different pain etiologies. Lastly, we emphasize the biological and clinical relevance of CCK2R as a promising target for the development of new treatments for pain management.

2014 ◽  
Vol 223 (1) ◽  
pp. T71-T81 ◽  
Author(s):  
Alex M DePaoli

The molecular mechanisms of body weight and body composition regulation have long been a research focus in the hopes of identifying tractable pathways for therapeutic interventions for obesity and diabetes, as well as related disorders such as nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) and polycystic ovary syndrome. The metabolic consequences of obesity and type 2 diabetes (T2D) were already a focus of the world's attention in 1994 when the discovery of leptin generated enormous enthusiasm for the potential to treat common (non-monogenic) obesity and its associated metabolic disorders with an adipokine hormone that regulated body weight as well as lipid and carbohydrate metabolism. Recombinant human leptin and many leptin analogs were developed and studied in animals and a few in human clinical trials. Overall, the opportunity for leptin as a therapeutic in unselected patients with obesity and T2D has not been substantiated in clinical trials. The potential for combination therapy suggested by clinical studies with leptin and pramlintide supports a path toward obesity treatment through the leptin pathway. The profound metabolic benefits seen with leptin in numerous forms of leptin deficiency, including lipodystrophy, provide hope for the opportunity to identify selected subsets of patients who could benefit from leptin treatment. This review provides a comprehensive overview of the clinical data on a subset of the potential utilities of leptin, specifically as a therapeutic for general or common obesity and its metabolic consequences including T2D and NAFLD/NASH.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 629
Author(s):  
Jorge Gutiérrez-Cuevas ◽  
Ana Sandoval-Rodriguez ◽  
Alejandra Meza-Rios ◽  
Hugo Christian Monroy-Ramírez ◽  
Marina Galicia-Moreno ◽  
...  

Obesity is defined as excessive body fat accumulation, and worldwide obesity has nearly tripled since 1975. Excess of free fatty acids (FFAs) and triglycerides in obese individuals promote ectopic lipid accumulation in the liver, skeletal muscle tissue, and heart, among others, inducing insulin resistance, hypertension, metabolic syndrome, type 2 diabetes (T2D), atherosclerosis, and cardiovascular disease (CVD). These diseases are promoted by visceral white adipocyte tissue (WAT) dysfunction through an increase in pro-inflammatory adipokines, oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and adverse changes in the gut microbiome. In the heart, obesity and T2D induce changes in substrate utilization, tissue metabolism, oxidative stress, and inflammation, leading to myocardial fibrosis and ultimately cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of carbohydrate and lipid metabolism, also improve insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. The purpose of this review is to provide an update on the molecular mechanisms involved in obesity-linked CVD pathophysiology, considering pro-inflammatory cytokines, adipokines, and hormones, as well as the role of oxidative stress, inflammation, and PPARs. In addition, cell lines and animal models, biomarkers, gut microbiota dysbiosis, epigenetic modifications, and current therapeutic treatments in CVD associated with obesity are outlined in this paper.


2021 ◽  
Vol 8 (5) ◽  
pp. 58
Author(s):  
Hazel Aberdeen ◽  
Kaela Battles ◽  
Ariana Taylor ◽  
Jeranae Garner-Donald ◽  
Ana Davis-Wilson ◽  
...  

The fastest growing demographic in the U.S. at the present time is those aged 65 years and older. Accompanying advancing age are a myriad of physiological changes in which reserve capacity is diminished and homeostatic control attenuates. One facet of homeostatic control lost with advancing age is glucose tolerance. Nowhere is this more accentuated than in the high proportion of older Americans who are diabetic. Coupled with advancing age, diabetes predisposes affected subjects to the onset and progression of cardiovascular disease (CVD). In the treatment of type 2 diabetes, hypoglycemic episodes are a frequent clinical manifestation, which often result in more severe pathological outcomes compared to those observed in cases of insulin resistance, including premature appearance of biomarkers of senescence. Unfortunately, molecular mechanisms of hypoglycemia remain unclear and the subject of much debate. In this review, the molecular basis of the aging vasculature (endothelium) and how glycemic flux drives the appearance of cardiovascular lesions and injury are discussed. Further, we review the potential role of the serum response factor (SRF) in driving glycemic flux-related cellular signaling through its association with various proteins.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1086
Author(s):  
Vasiliki Zoi ◽  
Vasiliki Galani ◽  
Georgios D. Lianos ◽  
Spyridon Voulgaris ◽  
Athanasios P. Kyritsis ◽  
...  

Curcumin is a polyphenol extracted from the rhizomes of the turmeric plant, Curcuma longa which has anti-inflammatory, and anticancer properties. Chronic inflammation is associated with the development of cancer. Curcumin acts on the regulation of various immune modulators, including cytokines, cyclooxygenase-2 (COX-2), and reactive oxygen species (ROS), which partly explains its anticancer effects. It also takes part in the downregulation of growth factors, protein kinases, oncogenic molecules and various signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (STAT3) signaling. Clinical trials of curcumin have been completed or are ongoing for various types of cancer. This review presents the molecular mechanisms of curcumin in different types of cancer and the evidence from the most recent clinical trials.


Endocrinology ◽  
2020 ◽  
Vol 162 (1) ◽  
Author(s):  
Manasi Das ◽  
Consuelo Sauceda ◽  
Nicholas J G Webster

Abstract Mounting evidence suggests a role for mitochondrial dysfunction in the pathogenesis of many diseases, including type 2 diabetes, aging, and ovarian failure. Because of the central role of mitochondria in energy production, heme biosynthesis, calcium buffering, steroidogenesis, and apoptosis signaling within cells, understanding the molecular mechanisms behind mitochondrial dysregulation and its potential implications in disease is critical. This review will take a journey through the past and summarize what is known about mitochondrial dysfunction in various disorders, focusing on metabolic alterations and reproductive abnormalities. Evidence is presented from studies in different human populations, and rodents with genetic manipulations of pathways known to affect mitochondrial function.


2019 ◽  
Vol 20 (22) ◽  
pp. 5544 ◽  
Author(s):  
Carmen De Caro ◽  
Claudia Cristiano ◽  
Carmen Avagliano ◽  
Alessia Bertamino ◽  
Carmine Ostacolo ◽  
...  

Background: Transient Receptor Potential Melastatin-8 (TRPM8) is a non-selective cation channel activated by cold temperature and by cooling agents. Several studies have proved that this channel is involved in pain perception. Although some studies indicate that TRPM8 inhibition is necessary to reduce acute and chronic pain, it is also reported that TRPM8 activation produces analgesia. These conflicting results could be explained by extracellular Ca2+-dependent desensitization that is induced by an excessive activation. Likely, this effect is due to phosphatidylinositol 4,5-bisphosphate (PIP2) depletion that leads to modification of TRPM8 channel activity, shifting voltage dependence towards more positive potentials. This phenomenon needs further evaluation and confirmation that would allow us to understand better the role of this channel and to develop new therapeutic strategies for controlling pain. Experimental approach: To understand the role of TRPM8 in pain perception, we tested two specific TRPM8-modulating compounds, an antagonist (IGM-18) and an agonist (IGM-5), in either acute or chronic animal pain models using male Sprague-Dawley rats or CD1 mice, after systemic or topical routes of administration. Results: IGM-18 and IGM-5 were fully characterized in vivo. The wet-dog shake test and the body temperature measurements highlighted the antagonist activity of IGM-18 on TRPM8 channels. Moreover, IGM-18 exerted an analgesic effect on formalin-induced orofacial pain and chronic constriction injury-induced neuropathic pain, demonstrating the involvement of TRPM8 channels in these two pain models. Finally, the results were consistent with TRPM8 downregulation by agonist IGM-5, due to its excessive activation. Conclusions: TRPM8 channels are strongly involved in pain modulation, and their selective antagonist is able to reduce both acute and chronic pain.


2019 ◽  
Vol 15 (31) ◽  
pp. 3565-3578 ◽  
Author(s):  
Jenny O’Nions ◽  
William Townsend

The outcomes for follicular lymphoma (FL) have improved significantly in recent years. This has been driven by an improved understanding of the pathobiology of FL and the development of therapeutic anti-CD20 antibodies. Combining rituximab with chemotherapy, coupled with its use as maintenance therapy, has contributed to significant improvements in disease control and progression-free survival. However, FL remains incurable and almost all patients invariably relapse. Therefore, there remains a need to develop novel therapeutic options and optimize existing regimens. Obinutuzumab (a first-in-class, glycoengineered, humanized type 2 anti-CD20 antibody) has been evaluated in a number of clinical trials. In this review, we will summarize the evaluable results of clinical trials investigating the efficacy of obinutuzumab in the treatment of FL.


2017 ◽  
Vol 474 (24) ◽  
pp. 4219-4251 ◽  
Author(s):  
Ondrej Slaby ◽  
Richard Laga ◽  
Ondrej Sedlacek

The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.


2013 ◽  
Vol 16 (7) ◽  
pp. A587-A588
Author(s):  
V. Foos ◽  
D. Grant ◽  
J.L. Palmer ◽  
M. Lamotte ◽  
P. McEwan

Sign in / Sign up

Export Citation Format

Share Document