scholarly journals Quaternary Ammonium Leucine-Based Surfactants: The Effect of a Benzyl Group on Physicochemical Properties and Antimicrobial Activity

Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 287 ◽  
Author(s):  
Diego Romano Perinelli ◽  
Dezemona Petrelli ◽  
Luca Agostino Vitali ◽  
Giulia Bonacucina ◽  
Marco Cespi ◽  
...  

Quaternary ammonium amphiphiles are a class of compounds with a wide range of commercial and industrial uses. In the pharmaceutical field, the most common quaternary ammonium surfactant is benzalkonium chloride (BAC), which is employed as a preservative in several topical formulations for ocular, skin, or nasal application. Despite the broad antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as fungi and small enveloped viruses, safety concerns regarding its irritant and cytotoxic effect on epithelial cells still remain. In this work, quaternary ammonium derivatives of leucine esters (C10, C12 and C14) were synthesised as BAC analogues. These cationic surfactants were characterised in terms of critical micelle concentration (CMC, by tensiometry), cytotoxicity (MTS and LDH assays on the Caco-2 and Calu-3 cell lines) and antimicrobial activity on the bacterial species Staphylococcus aureus and Enterococcus faecalis among the Gram-positives, Escherichia coli and Pseudomonas aeruginosa among the Gram-negatives and the yeast Candida albicans. They showed satisfactory surface-active properties, and a cytotoxic effect that was dependent on the length of the hydrophobic chain. Lower minimum inhibiting concentration (MIC) values were calculated for C14-derivatives, which were comparable to those calculated for BAC toward Gram-positive bacteria and slightly higher for Gram-negative bacteria and C. albicans. Thus, the synthesised leucine-based quaternary ammonium cationic surfactants can potentially find application as promising surface-active compounds with antimicrobial activity.

2009 ◽  
Vol 53 (9) ◽  
pp. 3705-3714 ◽  
Author(s):  
Raquel F. Epand ◽  
Guangshun Wang ◽  
Bob Berno ◽  
Richard M. Epand

ABSTRACT The only human cathelicidin, the 37-residue peptide LL-37, exhibits antimicrobial activity against both gram-positive and gram-negative bacteria. We studied the ability of several fragments of LL-37, exhibiting different antimicrobial activities, to interact with membranes whose compositions mimic the cytoplasmic membranes of gram-positive or of gram-negative bacteria. These fragments are as follows: KR-12, the smallest active segment of LL-37, with the sequence KRIVQRIKDFLR, which exhibits antimicrobial activity only against gram-negative bacteria; a slightly smaller peptide, RI-10, missing the two cationic residues at the N and C termini of KR-12, which has been shown not to have any antimicrobial activity; a longer peptide, GF-17, which shows antimicrobial activity against gram-positive as well as gram-negative bacteria; and GF-17D3, with 3 d-amino-acid residues, which is also selective only for gram-negative bacteria. Those fragments with the capacity to cluster anionic lipids away from zwitterionic lipids in a membrane exhibit selective toxicity toward bacteria containing zwitterionic as well as anionic lipids in their cytoplasmic membranes but not toward bacteria with only anionic lipids. This finding allows for the prediction of the bacterial-species selectivity of certain agents and paves the way for designing new antimicrobials targeted specifically toward gram-negative bacteria.


Author(s):  
Ranganathan Kapilan

Wide range of plant extracts are used for medicinal purposes as they are very cheap, efficient, harmless and do not cause any side effects. Spices are parts of different plants and they add special aroma and taste to the food preparations. The aim of the study was to determine the antimicrobial activity of some important naturally grown spices against gram positive and gram negative pathogenic bacteria. Antibacterial activity of the spices was tested against gram positive bacteria Bacillus pumilus, Bacillus cereus and Staphylococcus aureus and gram negative bacteria Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa using aqueous, ethanolic, methanolic and liquid nutrient extracts. Among all the extracts tested alcoholic extracts of Cardamom (Elettaria cardamom), clove (Eugenia caryophyllus) and lemongrass (Cymbopogoncitratus) showed maximum antimicrobial activity against gram negative bacteria while alcoholic extract of Cardamom (Elettaria cardamom) and lemongrass (Cymbopogoncitratus) showed maximum activity against gram positive bacteria. All the spices tested in this study proved that they have antibacterial activity and the maximum activity index (1.39) was exhibited by the ethanol extract of cardamom against E.coli.


2013 ◽  
Vol 37 (1) ◽  
pp. 109-113 ◽  
Author(s):  
Badrun Naher Chowdhury ◽  
Md Mozammel Haque ◽  
Md Hossain Sohrab ◽  
Farhana Afroz ◽  
MA Al-Mansur ◽  
...  

Three steroids, namely 24-ethyl-5?-cholestan-3-one (1), 5?-stigmast-22-en-3-one (2), stigmast-5, 22-dien-3-one (3) have been isolated from N. stellata. The phytochemical and antimicrobial as well as cytotoxic activities of Nymphaea stellata were investigated in this study. Crude extracts of N. stellata and various column fractions exhibited poor antimicrobial activity against a wide range of Gram-positive and Gram-negative bacteria and fungi. The crude extract and the fractions showed significant cytotoxic effect when subjected to brine shrimp lethality bioassay. DOI: http://dx.doi.org/10.3329/jbas.v37i1.15687 Journal of Bangladesh Academy of Sciences, Vol. 37, No. 1, 109-113, 2013


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2020 ◽  
Vol 22 (1) ◽  
pp. 105
Author(s):  
Wanting Li ◽  
Zixuan Huang ◽  
Rui Cai ◽  
Wan Yang ◽  
Huawei He ◽  
...  

Silver-based hybrid nanomaterials are receiving increasing attention as potential alternatives for traditional antimicrobial agents. Here, we proposed a simple and eco-friendly strategy to efficiently assemble zinc oxide nanoparticles (ZnO) and silver nanoparticles (AgNPs) on sericin-agarose composite film to impart superior antimicrobial activity. Based on a layer-by-layer self-assembly strategy, AgNPs and ZnO were immobilized on sericin-agarose films using the adhesion property of polydopamine. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction spectroscopy were used to show the morphology of AgNPs and ZnO on the surface of the composite film and analyze the composition and structure of AgNPs and ZnO, respectively. Water contact angle, swelling ratio, and mechanical property were determined to characterize the hydrophilicity, water absorption ability, and mechanical properties of the composite films. In addition, the antibacterial activity of the composite film was evaluated against Gram-positive and Gram-negative bacteria. The results showed that the composite film not only has desirable hydrophilicity, high water absorption ability, and favorable mechanical properties but also exhibits excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria. It has shown great potential as a novel antimicrobial biomaterial for wound dressing, artificial skin, and tissue engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


Micromachines ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 367 ◽  
Author(s):  
Yuguang Liu ◽  
Dirk Schulze-Makuch ◽  
Jean-Pierre de Vera ◽  
Charles Cockell ◽  
Thomas Leya ◽  
...  

Single-cell sequencing is a powerful technology that provides the capability of analyzing a single cell within a population. This technology is mostly coupled with microfluidic systems for controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of lysing the cells for genome amplification. The major challenges that bacterial species pose to genome amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be used to extract genomic DNA from both gram-positive and gram-negative species without interfering with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies. Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hessa H. Al-Rasheed ◽  
Monirah Al Alshaikh ◽  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ayman El-Faham

Novel series of 4,6-disubstituted-1,3,5-triazines containing hydrazone derivatives were synthesized employing ultrasonic irradiation and conventional heating. The ultrasonication gave the target products in higher yields and purity in shorter reaction time compared with the conventional method. IR, NMR (H 1 and C 13), elemental analysis, and LC-MS confirmed the structures of the new products. The antimicrobial and antifungal activities were evaluated for all the prepared compounds against some selected Gram-positive and Gram-negative bacterial strains. The results showed that only two compounds 7i (pyridine derivative) and 7k (4-chlorobenzaldehyde derivative) displayed biological activity against some Gram-positive and Gram-negative bacteria, while the rest of the tested compounds did not display any antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document