scholarly journals Functionalizing Ferritin Nanoparticles for Vaccine Development

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1621
Author(s):  
Margarida Q. Rodrigues ◽  
Paula M. Alves ◽  
António Roldão

In the last decade, the interest in ferritin-based vaccines has been increasing due to their safety and immunogenicity. Candidates against a wide range of pathogens are now on Phase I clinical trials namely for influenza, Epstein-Barr, and SARS-CoV-2 viruses. Manufacturing challenges related to particle heterogeneity, improper folding of fused antigens, and antigen interference with intersubunit interactions still need to be overcome. In addition, protocols need to be standardized so that the production bioprocess becomes reproducible, allowing ferritin-based therapeutics to become readily available. In this review, the building blocks that enable the formulation of ferritin-based vaccines at an experimental stage, including design, production, and purification are presented. Novel bioengineering strategies of functionalizing ferritin nanoparticles based on modular assembly, allowing the challenges associated with genetic fusion to be circumvented, are discussed. Distinct up/down-stream approaches to produce ferritin-based vaccines and their impact on production yield and vaccine efficacy are compared. Finally, ferritin nanoparticles currently used in vaccine development and clinical trials are summarized.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3310 ◽  
Author(s):  
Kenneth Lundstrom

Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.


2004 ◽  
Vol 85 (4) ◽  
pp. 911-919 ◽  
Author(s):  
Matilu Mwau ◽  
Inese Cebere ◽  
Julian Sutton ◽  
Priscilla Chikoti ◽  
Nicola Winstone ◽  
...  

The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime–boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing antibodies, the pTHr.HIVA DNA and MVA.HIVA vaccines focus solely on the induction of cell-mediated immunity. The vaccines expressed a common immunogen, HIVA, which consists of consensus HIV-1 clade A Gag p24/p17 proteins fused to a string of clade A-derived epitopes recognized by cytotoxic T lymphocytes (CTLs). Volunteers' fresh peripheral blood mononuclear cells were tested for HIV-specific responses in a validated gamma interferon enzyme-linked immunospot (ELISPOT) assay using four overlapping peptide pools across the Gag domain and three pools of known CTL epitopes present in all of the HIVA protein. Both the DNA and the MVA vaccines alone and in a DNA prime–MVA boost combination were safe and induced HIV-specific responses in 14 out of 18, seven out of eight and eight out of nine volunteers, respectively. These results are very encouraging and justify further vaccine development.


Author(s):  
Suyeong Han ◽  
Yongwon Jung

Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 35 ◽  
Author(s):  
Peter A. C. Maple

Herpesviruses have been isolated from a wide range of hosts including humans—for which, nine species have been designated. The human herpesviruses are highly host adapted and possess the capacity for latency, allowing them to survive in the host for life, effectively hidden from the immune system. This ability of human herpesviruses to modulate the host immune response poses particular challenges for vaccine development but at the same time proves attractive for the application of human herpesvirus vaccines to certain spheres of medicine. In this review, congenital cytomegalovirus (CMV) infection and hearing loss will be described followed by a comment on the status of current vaccine development. Secondly, the association of Epstein–Barr virus (EBV) infection with multiple sclerosis (MS) and how EBV vaccination may be of benefit will then be discussed. Prevention of congenital CMV by vaccination is an attractive proposition and several vaccines have been evaluated for potential use. Particularly challenging for the development of CMV vaccines are the needs to prevent primary infection, reinfection, and reactivation at the same time as overcoming the capacity of the virus to generate highly sophisticated immunomodulatory mechanisms. Cost and the practicalities of administering potential vaccines are also significant issues, particularly for low- and middle-income countries, where the burden of disease is greatest. An effective EBV vaccine that could prevent the 200,000 new EBV-associated malignancies which occur globally each year is not currently available. There is increasing interest in developing EBV vaccines to prevent MS and, in view of the association of infectious mononucleosis with MS, reducing childhood infectious mononucleosis is a potential intervention. Currently, there is no licensed EBV vaccine and, in order to progress the development of EBV vaccines for preventing MS, a greater understanding of the association of EBV with MS is required.


2020 ◽  
Vol 14 (suppl 1) ◽  
pp. 733-740
Author(s):  
Ran Jing ◽  
Rama Rao Vunnam ◽  
Yuhong Yang ◽  
Adam Karevoll ◽  
Srinivas Rao Vunnam

The severe acute respiratory syndrome virus (SARS-CoV-2), a novel coronavirus first discovered in Wuhan, China in December 2019 causes the Coronavirus Disease 19 (COVID-19), which presents with a wide range of clinical symptoms from mild or moderate to severe and critical illnesses. With the continuing transmission of the virus worldwide and the rapidly evolving situation globally, the World Health Organization (WHO) declared the COVID-19 outbreak a pandemic in March. Currently, there is no proven specific treatment for this potentially deadly disease beyond supportive care. However, a massive effort has been put globally into the investigation of medications and other interventional measures to fight COVID-19. Convalescent plasma therapy from recovered patients has recently drawn considerable interest. Several alternative medical treatments, although evidence of their efficacy still lacking, have also gained popularity, especially in countries with such traditions such as India and China. Rapid repurposing of drugs for COVID-19 has revealed a few promising candidate antiviral agents, but further research, especially high quality randomized controlled trials, will be needed to prove their efficacy and safety in the clinical use to treat COVID-19. Vaccine development has been the imperative task in the battle against SARS-CoV-2. While clinical trials have been launched for several candidate vaccines, research on COVID-19 vaccines is still at an early stage. So far, optimized supportive care remains the best practice against COVID-19.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2018 ◽  
Author(s):  
Sherif Tawfik ◽  
Olexandr Isayev ◽  
Catherine Stampfl ◽  
Joseph Shapter ◽  
David Winkler ◽  
...  

Materials constructed from different van der Waals two-dimensional (2D) heterostructures offer a wide range of benefits, but these systems have been little studied because of their experimental and computational complextiy, and because of the very large number of possible combinations of 2D building blocks. The simulation of the interface between two different 2D materials is computationally challenging due to the lattice mismatch problem, which sometimes necessitates the creation of very large simulation cells for performing density-functional theory (DFT) calculations. Here we use a combination of DFT, linear regression and machine learning techniques in order to rapidly determine the interlayer distance between two different 2D heterostructures that are stacked in a bilayer heterostructure, as well as the band gap of the bilayer. Our work provides an excellent proof of concept by quickly and accurately predicting a structural property (the interlayer distance) and an electronic property (the band gap) for a large number of hybrid 2D materials. This work paves the way for rapid computational screening of the vast parameter space of van der Waals heterostructures to identify new hybrid materials with useful and interesting properties.


Sign in / Sign up

Export Citation Format

Share Document