scholarly journals Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2012
Author(s):  
Tanya M. Barnes ◽  
Dalibor Mijaljica ◽  
Joshua P. Townley ◽  
Fabrizio Spada ◽  
Ian P. Harrison

Many dermatological conditions, such as eczema and psoriasis, are treated with topical therapeutic products. Instead of applying the active drug directly onto the skin, it is combined with a vehicle to aid in its delivery across the stratum corneum (SC) and into deeper regions of the skin, namely the epidermis and dermis. Absorption into the systemic circulation is minimized. Topical vehicles are also used as cosmetic moisturizers (often termed emollient therapy) to ameliorate dry skin, which is a cornerstone of the management of various dermatological conditions, including xerosis, eczema, psoriasis, and aging. The most common topical vehicles include ointments, creams, gels, and lotions, among others. It is crucial that topical vehicles are chosen based upon the size and properties (wet/dry, mucous/non-mucous, healthy/diseased) of the skin to be treated in order to optimize application and contact of the product with the skin, as this can have profound impacts on potency, efficacy, and patient compliance. This review examines common topical vehicles used for drug delivery and cosmetic moisturizers, including their formulation, advantages and disadvantages, and effects on the skin. The unique rules imposed by governing regulatory bodies in Australia and around the world, in terms of topical product claims, are also briefly examined.

2020 ◽  
Vol 4 (2) ◽  

Novel drug delivery systems are used to increase administration of drugs through transdermal system. Ethosomes has the ability to permeate through the stratum corneum. Ethosomes are the delivery carriers that enable the drugs to reach the deep skin layers as well as the systemic circulation. These vesicles are well known for their importance in cellular communication and in particle transportation for many years. This article reviews various aspects of ethosomes which includes their preparation, characterization, advantages and their applications in drug delivery. Ethosomes has number of important benefits such as, it improves the drug’s efficacy, enhances the patient compliance, comfort and reduces the total cost of treatment.


Author(s):  
Ezekiel O. Kehinde ◽  
Shah Akrutiben ◽  
Janki Patel

The human body is up of the skin which is the largest organ in the body and hence acts as a biological barrier that obstructs drug movement across the stratum corneum into the systemic circulation. The topical drug delivery system serves as a delivery system in which drugs are delivered for systemic circulation through the skin. Low diffusion rate across the stratum corneum is the main disadvantage of this system and for this limitation to be overcome, an Ethosomal formulation can be formulated which acts as a delivery system for the drug to be delivered across the biological barrier of the skin into the body. In ethosomal gel formulation, The prepared Ethosome is converted into a gel that can be applied to the skin what makes ethosomal gel formulation unique which enables drugs to reach the deep skin layers and/or the systemic circulation and enhance the delivery of active agents. In addition to this, it is also a malleable vesicular delivery carrier, soft and non-invasive. There is also a higher influx of drugs transdermally into the skin as ethosomal gel formulation allows drug to penetrate deep into the skin and enters systemic circulation. There is the development of new and novel therapies for the treatment of disease through the ethosomal drug delivery system as it is safe and effective and also easy to prepare. Topics ranging from preparation of ethosomes, Ethosomal gel, advantages and disadvantages, and characterization techniques are focused on in this review article.


Author(s):  
Mehta Abhinav ◽  
Jain Neha ◽  
Grobler Anne ◽  
Vandana Bharti

Novel drug delivery systems (NDDS) are one of the most strategies which enable to overcome the problems related to drug bioavailability. It is the rate and extent to which a drug becomes available to the target tissue after its administration. Most of the new drugs used today have poor bioavailability and are required to be administered at higher doses because only a small fraction of the administered dose is absorbed in the systemic circulation and able to reach the target site. This results in the wastage of major amount of drug and lead to adverse effects. Pharmaceutical technology mainly focuses on enhancing the solubility and permeability of drugs with lower bioavailability. Nanotechnology is the concept used in NDDS that enables a weight reduction of drug particles accompanied by an increase in stability and improved functionality. Various approaches such as nanosuspensions, liposomes, niosomes, nanoemulsions, cubosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), cyclodextrins, phytosome etc., are used for the enhancement of bioavailability. The present review focuses on the different approaches used for bioavailability enhancement along with their advantages and disadvantages.


Author(s):  
Raykar Meghana

Context: Mouth dissolving film (MDF) is an innovative approach for systemic delivery of therapeutically/ medicinally active drug substance(s). Objective: The main objectives of Oral mouth dissolving films is to provide better bioavailability of drug, to have improved permeability, quick onset of action as well as improve patient compliance Method: Preparation of films is similar to that of transdermal patch. Film when placed in mouth it get dissolve rapidly due to salivary fluid then it releases medicament(s), It will get absorbed within blood to show therapeutic action. Results: This overview provides information about formulation, technologies used in making mouth dissolving film formulations and evaluation tests carried out for the same. Conclusion: Mouth dissolving film formulations are innovative dosage form to improve the drug delivery, onset of action as well as improve patient compliance


2021 ◽  
Vol 11 (2) ◽  
pp. 113-120
Author(s):  
Neha Sharma ◽  
Tarun Kumar Sharma ◽  
Vinay Pandit ◽  
M. S Ashawat

Transdermal drug delivery system used to transport the drug across the skin deep into systemic circulation. The main advantages of Transdermal drug delivery system improved patient compliance, sustained release, avoidance of gastric irritation, as well as elimination of pre-systemic first-pass effect. But most of therapeutic agents is limited due to thickness of stratum corneum, which act as a barrier for the delivery of various drug molecules and only few molecules are able to reach the action site. Microneedles are the new form of delivery system, which are used to increase the delivery of drug through this route and overcoming the number of problems related to conventional drug delivery system the main aim of this review to focus on new innovation in transdermal drug delivery systems. In the microneedle drug delivery system, the skin is temporarily broken, that creating micron size pathways that deliver the sufficient amount of drug directly into the stratum corneum from which the drug can directly go into the systemic circulation. In this review, we describe different type of microneedles can be solid, coated, dissolving and biodegradable microneedles and their method of fabrication. Microneedles can be manufactured in different forms like hollow, solid, and dissolving. Also describe materials used for fabrication, fabrication techniques, methodology of drug delivery such as Poke and patch, Coat and poke, Poke and release, Poke and flow and evaluation parameters.


Author(s):  
R. R. Warner

Keratinocytes undergo maturation during their transit through the viable layers of skin, and then abruptly transform into flattened, anuclear corneocytes that constitute the cellular component of the skin barrier, the stratum corneum (SC). The SC is generally considered to be homogeneous in its structure and barrier properties, and is often shown schematically as a featureless brick wall, the “bricks” being the corneocytes, the “mortar” being intercellular lipid. Previously we showed the outer SC was not homogeneous in its composition, but contained steep gradients of the physiological inorganic elements Na, K and Cl, likely originating from sweat salts. Here we show the innermost corneocytes in human skin are also heterogeneous in composition, undergoing systematic changes in intracellular element concentration during transit into the interior of the SC.Human skin biopsies were taken from the lower leg of individuals with both “good” and “dry” skin and plunge-frozen in a stirred, cooled isopentane/propane mixture.


Author(s):  
Christe Mary M ◽  
Sasikumar Swamiappan

Presently, various approaches have been exploited in the prolongation of gastric residence time which includes floating drug delivery system (FDDS), swelling and expanding systems, bio-adhesive systems, modified shape systems and high density systems. Among various methods, floating drug delivery system is considered to be a predominant method. Gastric emptying of dosage forms is an extremely varying process and ability to extend and control the emptying time is a valuable resource for the dosage forms. This FDDS is having the ability to provides a solution for this purpose. The FDDS is a bulk density system lower than the gastric fluid, so that the rest will float on the stomach contents for a prolonged period of time and allowing the drug to release slowly at a desired rate from the system and intensifies the bio-availability of the drug having narrow absorption window. The main intension of writing this review on floating drug delivery system is to study the mechanism of flotation to acheive the gastric retention and to discuss briefly about the background of FDDS, advantages and disadvantages, application of FDDS and factors affecting the gastric retension time.


Author(s):  
Sagar T. Malsane ◽  
Smita S. Aher ◽  
R. B. Saudagar

Oral route is presently the gold standard in the pharmaceutical industry where it is regarded as the safest, most economical and most convenient method of drug delivery resulting in highest patient compliance. Over the past three decades, orally disintegrating tablets (FDTs) have gained considerable attention due to patient compliance. Usually, elderly people experience difficulty in swallowing the conventional dosage forms like tablets, capsules, solutions and suspensions because of tremors of extremities and dysphagia. In some cases such as motion sickness, sudden episodes of allergic attack or coughing, and an unavailability of water, swallowing conventional tablets may be difficult. One such problem can be solved in the novel drug delivery system by formulating “Fast dissolving tablets” (FDTs) which disintegrates or dissolves rapidly without water within few seconds in the mouth due to the action of superdisintegrant or maximizing pore structure in the formulation. The review describes the various formulation aspects, superdisintegrants employed and technologies developed for FDTs, along with various excipients, evaluation tests, marketed formulation and drugs used in this research area.


Sign in / Sign up

Export Citation Format

Share Document