scholarly journals Gene and Metabolite Integration Analysis through Transcriptome and Metabolome Brings New Insight into Heat Stress Tolerance in Potato (Solanum tuberosum L.)

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Bailin Liu ◽  
Lingshuang Kong ◽  
Yu Zhang ◽  
Yuncheng Liao

Potatoes are particularly vulnerable to elevated temperatures, with short heat stress (6 h) inducing stomatal opening and reducing membrane stability and prolonged heat stress (3-day) decreasing the photosynthetic capacity of potato leaves. The integration of transcriptomics and metabolomics methods demonstrated that 448 heat upregulated and 918 heat downregulated genes and 325 and 219 compounds in the positive and negative ionization modes, respectively, were up- or downregulated in leaves in response to short and prolonged heat stress. Differentially expressed genes enriched in photosynthesis, cell wall degradation, heat response, RNA processing, and protein degradation were highly induced during heat exposure, and differentially expressed metabolites involved in amino acid biosynthesis and secondary metabolism were mostly induced during heat exposure, suggesting a possible role of these genes and metabolites in the heat tolerance of the potato. Metabolite and transcript abundances for the upregulation of flavone and flavonol biosynthesis under prolonged heat stress were closely correlated. Heat-induced gene expression in Arabidopsisthaliana shoots and potato leaves overlapped, and heat stress-responsive genes overlapped with drought stress-related genes in potato. The transient expression of four heat-induced genes in Nicotiana benthamiana exhibited increased heat tolerance. This study provides a new transcriptome and metabolic profile of the potato’s response to heat.

Author(s):  
Kuo-hai Yu ◽  
Hui-ru Peng ◽  
Zhong-fu Ni ◽  
Ying-yin Yao ◽  
Zhao-rong Hu ◽  
...  

Abstract This paper discusses wheat responses to heat stress (including morphological and growth, cellular structure and physiological responses) and the molecular-genetic bases of heat response in wheat (including topics on mapping quantitative trait loci related to heat tolerance and the role of functional genes in response to heat stress). The improvement of heat tolerance of wheat by comprehensive strategies is also described. It is believed that with the emphasis on genetic resource exploration and with better understanding of the molecular basis, heat tolerance will be improved during wheat breeding programmes in the future.


Coral Reefs ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1241-1253 ◽  
Author(s):  
S. Rosset ◽  
G. Koster ◽  
J. Brandsma ◽  
A. N. Hunt ◽  
A. D. Postle ◽  
...  

Abstract Climate change-induced global warming threatens the survival of key ecosystems including shallow water coral reefs. Elevated temperatures can disrupt the normal physiological functioning of photosynthetic organisms by altering the fluidity and permeability of chloroplast membranes that is defined and regulated by their lipid composition. Since the habitat-forming reef corals rely on the obligatory symbiosis with dinoflagellates of the family Symbiodiniaceae, their heat stress response can be expected to be strongly influenced by the symbiont's lipid metabolism. However, in contrast to the steady increase in the knowledge of the functioning of coral symbionts at the genomic and transcriptomic level, the understanding of their membrane lipid composition and regulation in response to temperature stress is lagging behind. We have utilised mass spectrometry-based lipidomic analyses to identify the key polar lipids that form the biological membranes of reef coral symbionts, comparing the thermotolerant species Durusdinium trenchii with the thermosensitive taxon Cladocopium C3, both hosted by Acropora valida. Our results indicate that the superior thermotolerance D. trenchii inside the host corals could be achieved through (1) the amount and saturation of sulfoquinovosyldiacylglycerols, in particular through putative photosystem II interactions, (2) the increased digalactosyldiacylglycerol to monogalactosyldiacylglycerol ratio with the potential to stabilise thylakoid membranes and integrated proteins, and (3) the chaperone-like function of lyso-lipids. Thereby, our study provides novel insights into the heat tolerance of coral symbionts, contributing to the understanding of the potential of coral reef ecosystems to respond and adjust to heat stress events that are becoming more frequent due to climate change. Finally, our identification of multiple mechanisms of heat tolerance in Symbiodiniaceae furthers the knowledge of the general stress physiology of photosynthetic organisms.


2019 ◽  
Vol 7 (8) ◽  
pp. 256 ◽  
Author(s):  
Dalit ◽  
Keren ◽  
Eviatar ◽  
Hiba ◽  
Gal ◽  
...  

The profound mutualistic symbiosis between corals and their endosymbiotic counterparts, Symbiodiniaceae algae, has been threatened by the increase in seawater temperatures, leading to breakdown of the symbiotic relationship—coral bleaching. To characterize the heat-stress response of the holobiont, we generated vital apo-symbiotic Euphyllia paradivisa corals that lacked the endosymbiotic algae. Using RNA sequencing, we analyzed the gene expression of these apo-symbionts vs. symbiotic ones, to test the effect of the algal presence on the tolerance of the coral. We utilized literature-derived lists of “symbiosis differentially expressed genes” and “coral heat-stress genes” in order to compare between the treatments. The symbiotic and apo-symbiotic samples were segregated into two separate groups with several different enriched gene ontologies. Our findings suggest that the presence of endosymbionts has a greater negative impact on the host than the environmental temperature conditions experienced by the holobiont. The peak of the stress reaction was identified as 28 °C, with the highest number of differentially expressed genes. We suggest that the algal symbionts increase coral holobiont susceptibility to elevated temperatures. Currently, we can only speculate whether coral species, such as E. paradivisa, with the plasticity to also flourish as apo-symbionts, may have a greater chance to withstand the upcoming global climate change challenge.


2007 ◽  
Vol 292 (1) ◽  
pp. R186-R194 ◽  
Author(s):  
Chin Leong Lim ◽  
Gary Wilson ◽  
Lindsay Brown ◽  
Jeff S. Coombes ◽  
Laurel T. Mackinnon

This study investigated the roles of endotoxemia and heat-induced tissue damage in the pathology of heat stroke. In groups of eight, male Wistar rats were treated with heat exposure only (HE), or heat exposure with turpentine (T+HE), dexamethasone (D+HE), and turpentine and dexamethasone combined (TD+HE). The rats remained sedated for 2 h after receiving the respective treatments, followed by heat exposure until the core temperature (Tc) was 42°C for 15 min; control rats received turpentine (T), dexamethasone (D), and turpentine and dexamethasone (TD) without heat stress. Blood samples were collected before treatment ( baseline I), after 2 h of passive rest ( baseline II), at Tc 40°C (T40), and 15 min after achieving Tc 42°C (T42). No rats died in the nonheat-stressed groups. Survival rate was lowest in the TD+HE rats (37.5%), followed by the HE (62.5%), T+HE (75%), and D+HE (100%) rats ( P < 0.05). The duration of survival at T42°C was shortest in the TD+HE rats (9.9 ± 6.2 min) ( P < 0.01), followed by the T+HE (11.3 ± 6.1 min) and the HE (12.2 ± 4 min) ( P < 0.05) rats. The increase in plasma IL-6 concentrations was highest in the T+HE (352%) and HE (178%) rats ( P < 0.05). D+HE treatment suppressed the increases in plasma aspartate transaminase, alanine aminotransferase, and IL-6 and LPS concentrations during severe heat stress. Heat stroke can be triggered by endotoxemia or heat-induced tissue damage, and preexisting inflammation compromises heat tolerance, whereas blocking endotoxemia increases heat tolerance.


2017 ◽  
Vol 142 (5) ◽  
pp. 367-375 ◽  
Author(s):  
Jinyu Wang ◽  
Patrick Burgess ◽  
Stacy A. Bonos ◽  
William A. Meyer ◽  
Bingru Huang

Summer decline is typically characterized by heat and drought stress and is a major concern for fine fescue species (Festuca). The objectives of this study were to examine whether heat or drought stress is more detrimental, and to determine the genotypic variations in heat and drought tolerance for fine fescues. A total of 26 cultivars, including seven hard fescues (Festuca trachyphylla), eight chewings fescues (Festuca rubra ssp. commutate), seven strong creeping red fescues (Festuca rubra ssp. rubra), two sheep fescues (Festuca ovina ssp. hirtula), and two slender creeping red fescues (Festuca rubra ssp. littoralis) were subjected to prolonged heat or drought stress in growth chambers. Several physiological parameters, including turf quality (TQ), electrolyte leakage (EL), photochemical efficiency (Fv/Fm) chlorophyll content (Chl), and relative water content (RWC) were measured in plants exposed to heat or drought stress. The results indicated that heat stress was more detrimental than drought stress for fine fescue species. Based on TQ and major physiological parameters (EL and Fv/Fm) under heat stress, several cultivars with good heat tolerance were selected, including ‘Blue Ray’, ‘Spartan II’, ‘MN-HD1’, ‘Shoreline’, ‘Navigator II’, ‘Azure’, ‘Beacon’, ‘Aurora Gold’, ‘Reliant IV’, ‘Marco Polo’, ‘Garnet’, ‘Wendy Jean’, ‘Razor’, and ‘Cindy Lou’. Based on TQ and major physiological parameters (EL, RWC, and Fv/Fm) under drought stress, several cultivars with good drought tolerance were selected, including ‘Spartan II’, ‘MN-HD1’, ‘Reliant IV’, ‘Garnet’, ‘Azure’, and ‘Aurora Gold’. These cultivars could be used in hot, dry, or both environments and as breeding germplasm for developing heat tolerance, drought tolerance, or both.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Lv Sun ◽  
Jingjing Wen ◽  
Huiru Peng ◽  
Yingyin Yao ◽  
Zhaorong Hu ◽  
...  

AbstractWheat production requires at least ~ 2.4% increase per year rate by 2050 globally to meet food demands. However, heat stress results in serious yield loss of wheat worldwide. Correspondingly, wheat has evolved genetic basis and molecular mechanisms to protect themselves from heat-induced damage. Thus, it is very urgent to understand the underlying genetic basis and molecular mechanisms responsive to elevated temperatures to provide important strategies for heat-tolerant varieties breeding. In this review, we focused on the impact of heat stress on morphology variation at adult stage in wheat breeding programs. We also summarize the recent studies of genetic and molecular factors regulating heat tolerance, including identification of heat stress tolerance related QTLs/genes, and the regulation pathway in response to heat stress. In addition, we discuss the potential ways to improve heat tolerance by developing new technologies such as genome editing. This review of wheat responses to heat stress may shed light on the understanding heat-responsive mechanisms, although the regulatory network of heat tolerance is still ambiguous in wheat.


2020 ◽  
Author(s):  
Anish M.S. Shrestha ◽  
Crissa Ann I. Lilagan ◽  
Joyce Emlyn B. Guiao ◽  
Maria Rowena R. Romana-Eguia ◽  
Ma. Carmen Ablan Lagman

Abstract Background: The fishery and aquaculture of the widely distributed mangrove crab Scylla serrata is a steadily growing, high-value, global industry. Climate change poses a risk to this industry as temperature elevations are expected to threaten the mangrove crab habitat and the supply of mangrove crab seeds from the wild. It is therefore important to understand the genomic and molecular basis of how mangrove crab populations from sites with different climate profiles respond to heat stress. Towards this, we performed RNA-seq on the gill tissue of S. serrata individuals sampled from 3 sites (Cagayan, Bicol, and Bataan) in the Philippines, under normal and heat-stressed conditions. To compare the transcriptome expression profiles, we designed a 2-factor generalized linear model containing interaction terms, which allowed us to simultaneously analyze within-site response to heat-stress and across-site differences in the response.Results: We present the first ever transcriptome assembly of S. serrata obtained from a massive data set containing ~66 Gbases of cleaned RNA-seq reads. With lowly-expressed and short contigs excluded, the assembly contains roughly 17,000 genes with an N50 length of 2,366 bp. Based on sequence comparison to the fruitfly and shrimp proteomes, our assembly contains several thousands of almost full-length transcripts. Differential expression analysis found population-specific differences in heat-stress response. Within-site analysis of heat response showed 177, 755, and 221 differentially expressed (DE) genes in the Cagayan, Bataan, and Bicol group, respectively. Across-site analysis of difference in heat response showed that between Cagayan and Bataan, there were 389 differently differentially expressed (DDE) genes associated with 48 signalling and stress-response pathways; and between Cagayan and Bicol, there were 101 DDE genes affecting 8 pathways.Conclusion: In light of previous work on climate profiling and on population genetics of marine species in the Philippines, our findings suggest that the variation in thermal response among populations might be derived from acclimatory plasticity due to pre-exposure to extreme temperature variations or from population structure shaped by connectivity which leads to adaptive genetic differences among populations.


1982 ◽  
Vol 52 (3) ◽  
pp. 734-738 ◽  
Author(s):  
R. Francesconi ◽  
R. Hubbard ◽  
M. Mager

To determine the effects of prolonged exposure to severe thermal stress on the subsequent ability to exercise in the heat, rats were exposed to a hot (35 degrees C) environment for 1, 2, 3, or 4 wk. At each of these weekly intervals the rats ran on a treadmill to hyperthermic exhaustion (41.5--43.0 degrees C), and tail-skin (Tt-sk) and rectal (Tre) temperatures were monitored. The results indicated that prolonged heat exposure did not enhance the rats' endurance capacity. Further, as the period of heat stress increased, there was a concomitant significant decrement in tail-skin vasodilation; indeed, after 3 and 4 wk at 35 degrees C Tt-sk reflects a complete shutdown of blood flow to the tail during exercise. Additionally, slight evaporative cooling from exogenous fluid (saliva or urine from the treadmill surface) might account for the low Tt-sk in relation to Tre and Ta. Hematocrit ratios ordinarily decreased from week to week during heat exposure, whereas body weights remained very consistent throughout the 4-wk interval. The mechanism of this decrement in vasodilation is undergoing further study.


Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 264 ◽  
Author(s):  
Waqas Ahmed ◽  
Ronghua Li ◽  
Yanshi Xia ◽  
Guihua Bai ◽  
Kadambot H. M. Siddique ◽  
...  

Heat stress disturbs cellular homeostasis, thus usually impairs yield of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). MicroRNAs (miRNAs) play a significant role in plant responses to different stresses by modulating gene expression at the post-transcriptional level. However, the roles that miRNAs and their target genes may play in heat tolerance of flowering Chinese cabbage remain poorly characterized. The current study sequenced six small RNA libraries generated from leaf tissues of flowering Chinese cabbage collected at 0, 6, and 12 h after 38 °C heat treatment, and identified 49 putative novel miRNAs and 43 known miRNAs that differentially expressed between heat-tolerant and heat-sensitive flowering Chinese cabbage. Among them, 14 novel and nine known miRNAs differentially expressed only in the heat-tolerant genotype under heat-stress, therefore, their target genes including disease resistance protein TAO1-like, RPS6, reticuline oxidase-like protein, etc. might play important roles in enhancing heat-tolerance. Gene Ontology (GO) analysis revealed that targets of these differentially expressed miRNAs may play key roles in responses to temperature stimulus, cell part, cellular process, cell, membrane, biological regulation, binding, and catalytic activities. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified their important functions in signal transduction, environmental adaptation, global and overview maps, as well as in stress adaptation and in MAPK signaling pathways such as cell death. These findings provide insight into the functions of the miRNAs in heat stress tolerance of flowering Chinese cabbage.


2020 ◽  
Author(s):  
Darae Kang ◽  
Kwan Seob Shim

Abstract BackgroundThe increasing trend of global warming has affected the livestock industry through the heat stress caused to the animals. Among them, poultry are the most susceptible to heat stress, which results in serious production problems. Therefore, a better understanding of the mechanisms related to the thermal reactions and thermal resistance in poultry would be helpful toward resolving the production issues. In this study, whole proteome analysis was carried out to identify differentially expressed proteins in the liver tissue of broilers under chronic heat stress (35℃/24 h, each day between the broiler ages of 21–35 days). Additionally, the effect of early heat exposure (40℃/24 h, for 1 day only on chicks at 5 days of age) was determined.ResultsIn total, 277 differentially expressed proteins due to chronic heat stress were identified (132 downregulated and 145 upregulated). Of those, 95 proteins were regulated by early heat exposure (42 downregulated and 53 upregulated during chronic heat stress). Of the 95 proteins, 8 were related to actin metabolism. According to the KEGG analysis, the proteins were mainly involved in pathways for carbon metabolism and carbohydrate metabolism. Under chronic heat stress, the proteins involved in carbohydrate metabolism were expressed in such a way as to promote the metabolism of carbohydrates, which is the natural means to reduce body temperature but may well induce cell damage.ConclusionEarly heat exposure reduced the heat stress-induced expression changes of select proteins, indicating the adaptability of the animal to chronic heat stress. The determination of the differentially expressed proteins in the liver proteome under chronic heat stress and early heat exposure suggests that the liver of broilers has various physiological mechanisms for regulating homeostasis to aid heat resistance.


Sign in / Sign up

Export Citation Format

Share Document