scholarly journals Genotype-by-Sequencing Analysis of Mutations and Recombination in Pepper Progeny of Gamma-Irradiated Gametophytes

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 144
Author(s):  
Yeong Deuk Jo ◽  
Han Sol Kang ◽  
Hong-Il Choi ◽  
Jin-Baek Kim

The irradiation of dry seeds is the most widely-used irradiation method for improving seed-propagated crops; however, the irradiation of other tissues also has useful effects. The irradiation of plant reproductive organs, rather than seeds, for mutation breeding has advantages, such as producing non-chimeric progeny. However, the mutation frequency and spectrum produced using this method have not been analyzed on a genome-wide level. We performed a genotype-by-sequencing analysis to determine the frequencies of single-base substitutions and small (1–2 bp) insertions and deletions in hot pepper (Capsicum annuum L.) plants derived from crosses using gamma-irradiated female or male gametophytes. The progeny of irradiated gametophytes showed similar or higher DNA mutation frequencies, which were dependent on the irradiation dose and irradiated tissue, and less biased single base substitutions than progeny of irradiated seeds. These characteristics were expected to be beneficial for development of mutation population with a high frequency of small DNA mutations and performing reverse-genetics-based mutation screening. We also examined the possible use of this irradiation method in manipulating the meiotic recombination frequency; however, no statistically significant increase was detected. Our results provide useful information for further research and breeding using irradiated gametophytes.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 373
Author(s):  
Nguyen Ngoc Hung ◽  
Dong-Gun Kim ◽  
Jae Il Lyu ◽  
Kyong-Cheul Park ◽  
Jung Min Kim ◽  
...  

Transposable elements (TEs)—major components of eukaryotic genomes—have the ability to change location within a genome. Because of their mobility, TEs are important for genome diversification and evolution. Here, a simple rapid method, using the consensus terminal inverted repeat sequences of PONG, miniature inverted-repeat transposable element (MITE)-Tourist (M-t) and MITE-Stowaway (M-s) as target region amplification polymorphism (TE-TRAP) markers, was employed to investigate the mobility of TEs in a gamma-irradiated soybean mutant pool. Among the different TE-TRAP primer combinations, the average polymorphism level and polymorphism information content value were 57.98% and 0.14, respectively. Only the PONG sequence separated the mutant population into three major groups. The inter-mutant population variance, determined using the PONG marker (3.151 and 29%) was greater than that of the M-t (2.209 and 20%) and M-s (2.766 and 18%) markers, whereas the reverse was true for the intra-mutant population variations, with M-t and M-s values, being 15.151 (82%) and 8.895 (80%), respectively, compared with the PONG marker (7.646 and 71%). Thus, the MITE markers revealed more dynamic and active mobility levels than the PONG marker in gamma-ray irradiated soybean mutant lines. The TE-TRAP technique associated with sensitive MITEs is useful for investigating genetic diversity and TE mobilization, providing tools for mutant selection in soybean mutation breeding.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Archana Khadgi ◽  
Courtney A. Weber

Red raspberry (Rubus idaeus L.) is an expanding high-value berry crop worldwide. The presence of prickles, outgrowths of epidermal tissues lacking vasculature, on the canes, petioles, and undersides of leaves complicates both field management and harvest. The utilization of cultivars with fewer prickles or prickle-free canes simplifies production. A previously generated population segregating for prickles utilizing the s locus between the prickle-free cultivar Joan J (ss) and the prickled cultivar Caroline (Ss) was analyzed to identify the genomic region associated with prickle development in red raspberry. Genotype by sequencing (GBS) was combined with a genome-wide association study (GWAS) using fixed and random model circulating probability unification (FarmCPU) to analyze 8474 single nucleotide polymorphisms (SNPs) and identify significant markers associated with the prickle-free trait. A total of four SNPs were identified on chromosome 4 that were associated with the phenotype and were located near or in annotated genes. This study demonstrates how association genetics can be used to decipher the genetic control of important horticultural traits in Rubus, and provides valuable information about the genomic region and potential genes underlying the prickle-free trait.


Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


Endocrinology ◽  
2018 ◽  
Vol 160 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Keiichi Itoi ◽  
Ikuko Motoike ◽  
Ying Liu ◽  
Sam Clokie ◽  
Yasumasa Iwasaki ◽  
...  

Abstract Glucocorticoids (GCs) are essential for stress adaptation, acting centrally and in the periphery. Corticotropin-releasing factor (CRF), a major regulator of adrenal GC synthesis, is produced in the paraventricular nucleus of the hypothalamus (PVH), which contains multiple neuroendocrine and preautonomic neurons. GCs may be involved in diverse regulatory mechanisms in the PVH, but the target genes of GCs are largely unexplored except for the CRF gene (Crh), a well-known target for GC negative feedback. Using a genome-wide RNA-sequencing analysis, we identified transcripts that changed in response to either high-dose corticosterone (Cort) exposure for 12 days (12-day high Cort), corticoid deprivation for 7 days (7-day ADX), or acute Cort administration. Among others, canonical GC target genes were upregulated prominently by 12-day high Cort. Crh was upregulated or downregulated most prominently by either 7-day ADX or 12-day high Cort, emphasizing the recognized feedback effects of GC on the hypothalamic-pituitary-adrenal (HPA) axis. Concomitant changes in vasopressin and apelin receptor gene expression are likely to contribute to HPA repression. In keeping with the pleotropic cellular actions of GCs, 7-day ADX downregulated numerous genes of a broad functional spectrum. The transcriptome response signature differed markedly between acute Cort injection and 12-day high Cort. Remarkably, six immediate early genes were upregulated 1 hour after Cort injection, which was confirmed by quantitative reverse transcription PCR and semiquantitative in situ hybridization. This study may provide a useful database for studying the regulatory mechanisms of GC-dependent gene expression and repression in the PVH.


2021 ◽  
Author(s):  
Alexandra Ficht ◽  
Robert W. Bruce ◽  
Davoud Torkamaneh ◽  
Christopher Grainger ◽  
Milad Eskandari ◽  
...  

Abstract Soybean (Glycine max (L.) Merr) is a crop of global importance for both human and animal consumption, which was domesticated in China more than 6000 years ago. A concern about losing genetic diversity as a result of decades of breeding has been expressed by soybean researchers. In order to develop new cultivars, it is critical for breeders to understand the genetic variability present for traits of interest in their program germplasm. Sucrose concentration is becoming an increasingly important trait for the production of soy-food products. The objective of this study was to use a genome-wide association study (GWAS) to identify putative QTL for sucrose concentration in soybean seed. A GWAS panel consisting of 266 historic and current soybean accessions was genotyped with 76k genotype-by-sequencing (GBS) SNP data and phenotyped in four field locations in Ontario (Canada) from 2015 to 2017. Seven putative QTL were identified on chromosomes 1, 6, 8, 9, 10, 13 and 14. A key gene related to sucrose synthase (Glyma.06g182700) was found to be associated with the QTL found on chromosome 6. This information will facilitate efforts to increase the available genetic variability for sucrose concentration in soybean breeding programs and develop new and improved high-sucrose soybean cultivars suitable for the soy-food industry.


2018 ◽  
Author(s):  
Jie Zhang ◽  
Massimo Cavallaro ◽  
Daniel Hebenstreit

Transcription of many genes in metazoans is subject to polymerase pausing, which corresponds to the transient arrest of transcriptionally engaged polymerase. It occurs mainly at promoter proximal regions and is not well understood. In particular, a genome-wide measurement of pausing times at high resolution has been lacking.We present here an extension of PRO-seq, time variant PRO-seq (TV-PRO-seq), that allowed us to estimate genome-wide pausing times at single base resolution. Its application to human cells reveals that promoter proximal pausing is surprisingly short compared to other regions and displays an intricate pattern. We also find precisely conserved pausing profiles at tRNA and rRNA genes and identified DNA motifs associated with pausing time. Finally, we show how chromatin states reflect differences in pausing times.


2015 ◽  
Vol 19 (1) ◽  
pp. 1
Author(s):  
AYPBC Widyatmoko ◽  
Susumu Shiraishi

Mini- and microsatellites of four Acacia species, A. aulacocarpa, A. auriculiformis, A. crassicarpa and A.mangium were investigated on four non-coding regions of cpDNA, the intron of trnL, and the intergenicspacers of trnL - trnP, trnD - trnY, and trnP – trnW. Nine single base substitutions and six informative miniandmicrosatellites were detected in the the four cpDNA non-coding regions. Based on the substitutionsand mini- and microsatellites, ten cpDNA haplotypes (A - J) could be distinguished. Acacia auriculiformispossessed fi ve haplotypes, A. aulacocarpa, four haplotypes, and A. crassicarpa, three haplotypes. All samplesof A. mangium possessed the same haplotype. Mini- and microsatellites recognized in this study can beused for species identifi cation of the four Acacia species. The ten haplotypes could divided the four speciesinto 2 groups, A. aulacocarpa-A.crassicarpa group and A. auriculiformis-A. mangium group. By developing thePCR-based markers based on the sequence information, many experiments can be carried out for the Acaciaimprovement programs.


2016 ◽  
Vol 1 (2) ◽  
pp. 73
Author(s):  
Arief Vivi Noviati ◽  
Sri Hutami ◽  
Ika Mariska ◽  
Endang Sjamsudin

<p class="p1">Aluminum toxicity is a major constraint to soybean production in acid soils. Since variabilities on Al tolerance in plants are very limited, mutation breeding, and <em>in vitro </em>selection were used to increase the variability. Three soyben genotypes were produced from cultivars Wilis and Sindoro that have been gamma irradiated and selected <em>in vitro </em>for their tolerance to Al on Al and low pH media. These genotypes and their original cultivars were then planted in a greenhouse in an acid soil on May 2001. The results showed that the plant performances were varied, some were shorter and more compact than the original. Based on the yield components, a number of plants from the genotypes showed higher than those of the control cultivars. These plants were considered more tolerant to Al than the original cultivars.</p>


ACS Nano ◽  
2009 ◽  
Vol 3 (9) ◽  
pp. 2533-2538 ◽  
Author(s):  
Robert F. Purnell ◽  
Jacob J. Schmidt

Sign in / Sign up

Export Citation Format

Share Document