scholarly journals From Traditional Breeding to Genome Editing for Boosting Productivity of the Ancient Grain Tef [Eragrostis tef (Zucc.) Trotter]

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 628
Author(s):  
Muhammad Numan ◽  
Abdul Latif Khan ◽  
Sajjad Asaf ◽  
Mohammad Salehin ◽  
Getu Beyene ◽  
...  

Tef (Eragrostis tef (Zucc.) Trotter) is a staple food crop for 70% of the Ethiopian population and is currently cultivated in several countries for grain and forage production. It is one of the most nutritious grains, and is also more resilient to marginal soil and climate conditions than major cereals such as maize, wheat and rice. However, tef is an extremely low-yielding crop, mainly due to lodging, which is when stalks fall on the ground irreversibly, and prolonged drought during the growing season. Climate change is triggering several biotic and abiotic stresses which are expected to cause severe food shortages in the foreseeable future. This has necessitated an alternative and robust approach in order to improve resilience to diverse types of stresses and increase crop yields. Traditional breeding has been extensively implemented to develop crop varieties with traits of interest, although the technique has several limitations. Currently, genome editing technologies are receiving increased interest among plant biologists as a means of improving key agronomic traits. In this review, the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) technology in improving stress resilience in tef is discussed. Several putative abiotic stress-resilient genes of the related monocot plant species have been discussed and proposed as target genes for editing in tef through the CRISPR-Cas system. This is expected to improve stress resilience and boost productivity, thereby ensuring food and nutrition security in the region where it is needed the most.

2017 ◽  
Vol 1 (2) ◽  
pp. 151-160
Author(s):  
Sandeep Kumar ◽  
Wei Chen ◽  
Stephen Novak

Advances in plant transgenic technology in the 20th century overcame the major hurdle for transfer of genetic material between species. This not only enabled fundamental insights into plant biology, but also revolutionized commercial agriculture. Adoption of transgenic plants in industrial agriculture has reduced pesticide application, while bringing significant increase in crop yields and farmers' profits. The progress made in transgenic technology over the last three decades paved the way mainly for simple single-gene insect and herbicide tolerance (HT) trait products. Modern agriculture demands stacking and pyramiding of complex traits that provide broad-spectrum insect and HT with other agronomic traits. In addition, more recent developments in genome editing provide unique opportunities to create precise on-demand genome modifications to enhance crop productivity. The major challenge for the plant biotech industry therefore remains to combine multiple forms of traits needed to create commercially viable stacked product. This review provides a historical perspective of conventional breeding stacks, current status of molecular stacks and future developments needed to enable genome-editing technology for trait stacking.


2018 ◽  
Vol 36 (3) ◽  
pp. 290-298 ◽  
Author(s):  
Alessandra Koltun ◽  
Lígia Erpen-Dalla Corte ◽  
Liliane Marcia Mertz-Henning ◽  
Leandro SA Gonçalves

ABSTRACT The burden of the current global challenge involving food security lies in the need to improve crop production. In this regard, biotechnology stands out as an essential tool to generate plants able to cope with pests, diseases, and harsh climatic conditions, and more efficient in the use of natural resources. An advanced approach to create genetic variability in a precise and targeted way, the genome-editing technique CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins), has drawn the attention of breeders. The genome editing CRISPR/Cas system relies on a guiding RNA that directs a nuclease to generate a double-strand break (DSB) at a target DNA, activating the cell repair systems and eventually leading to deletions or insertions of nucleotides. Therefore, CRISPR/Cas is a toolbox to achieve many goals, from basic science investigations to the development of crops with improved agronomic traits, with potential to bring innovative solutions to food production. The CRISPR/Cas system has been applied in a large number of plants, including some horticultural species. In this review, we present details of the CRISPR/Cas natural and artificial systems, its possibilities as a biotechnological tool, advantages over other breeding techniques, regulatory issues, and its applicability in horticultural crops, as well as future challenges.


Author(s):  
Jacob D. Zobrist ◽  
◽  
Morgan McCaw ◽  
Minjeong Kang ◽  
Alan L. Eggenberger ◽  
...  

Developed over thousands of years largely through human intervention, the modern maize genome can now be precisely modified for agricultural improvement and scientific research. This chapter focuses on progress made in recent decades utilizing site-specific nuclease (SSN) technologies in maize genome engineering. Many SSNs, such as meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas) have been used in maize for both functional analysis and trait improvement. The chapter summarizes the recent innovations related to maize genome editing using SSN technologies, the type of approaches, target genes and traits, and reagent delivery methods. It also discusses the current challenges as well as potential improvements for maize genome engineering protocols.


aBIOTECH ◽  
2021 ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Ligeng Ma

AbstractCommon wheat (Triticum aestivum L.) is one of the three major food crops in the world; thus, wheat breeding programs are important for world food security. Characterizing the genes that control important agronomic traits and finding new ways to alter them are necessary to improve wheat breeding. Functional genomics and breeding in polyploid wheat has been greatly accelerated by the advent of several powerful tools, especially CRISPR/Cas9 genome editing technology, which allows multiplex genome engineering. Here, we describe the development of CRISPR/Cas9, which has revolutionized the field of genome editing. In addition, we emphasize technological breakthroughs (e.g., base editing and prime editing) based on CRISPR/Cas9. We also summarize recent applications and advances in the functional annotation and breeding of wheat, and we introduce the production of CRISPR-edited DNA-free wheat. Combined with other achievements, CRISPR and CRISPR-based genome editing will speed progress in wheat biology and promote sustainable agriculture.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pengfei Xu ◽  
Yantao Zhu ◽  
Yanfeng Zhang ◽  
Jianxia Jiang ◽  
Liyong Yang ◽  
...  

MicroRNAs (miRNAs) and their target genes play vital roles in crops. However, the genetic variations in miRNA-targeted sites that affect miRNA cleavage efficiency and their correlations with agronomic traits in crops remain unexplored. On the basis of a genome-wide DNA re-sequencing of 210 elite rapeseed (Brassica napus) accessions, we identified the single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELs) in miRNA-targeted sites complementary to miRNAs. Variant calling revealed 7.14 million SNPs and 2.89 million INDELs throughout the genomes of 210 rapeseed accessions. Furthermore, we detected 330 SNPs and 79 INDELs in 357 miRNA target sites, of which 33.50% were rare variants. We also analyzed the correlation between the genetic variations in miRNA target sites and 12 rapeseed agronomic traits. Eleven SNPs in miRNA target sites were significantly correlated with phenotypes in three consecutive years. More specifically, three correlated SNPs within the miRNA-binding regions of BnSPL9-3, BnSPL13-2, and BnCUC1-2 were in the loci associated with the branch angle, seed weight, and silique number, respectively; expression profiling suggested that the variation at these 3 miRNA target sites significantly affected the expression level of the corresponding target genes. Taken together, the results of this study provide researchers and breeders with a global view of the genetic variations in miRNA-targeted sites in rapeseed and reveal the potential effects of these genetic variations on elite agronomic traits.


2021 ◽  
Author(s):  
Xiaoen Huang ◽  
Nian Wang

Sweet orange (Citrus sinensis) is the most economically important species for the citrus industry. However, it is susceptible to many diseases including citrus bacterial canker caused by Xanthomonas citri subsp. citri (Xcc) that triggers devastating effects on citrus production. Conventional breeding has not met the challenge to improve disease resistance of sweet orange due to the long juvenility and other limitations. CRISPR-mediated genome editing has shown promising potentials for genetic improvements of plants. Generation of biallelic/homozygous mutants remains difficult for sweet orange due to low transformation rate, existence of heterozygous alleles for target genes and low biallelic editing efficacy using the CRISPR technology. Here, we report improvements in the CRISPR/Cas9 system for citrus gene editing. Based on the improvements we made previously (dicot codon optimized Cas9, tRNA for multiplexing, a modified sgRNA scaffold with high efficiency, CsU6 to drive sgRNA expression), we further improved our CRISPR/Cas9 system by choosing superior promoters (CmYLCV or CsUbi promoter) to drive Cas9 and optimizing culture temperature. This system was able to generate a biallelic mutation rate of up to 89% for Carrizo citrange and 79% for Hamlin sweet orange. Consequently, this system was used to generate canker resistant Hamlin sweet orange by mutating the effector binding element (EBE) of canker susceptibility gene CsLOB1, which is required for causing canker symptoms by Xcc. Six biallelic Hamlin sweet orange mutant lines in the EBE were generated. The biallelic mutants are resistant to Xcc. Biallelic mutation of the EBE region abolishes the induction of CsLOB1 by Xcc. This study represents a significant improvement in sweet orange gene editing efficacy and generating disease resistant varieties via CRISPR-mediated genome editing. This improvement in citrus genome editing makes genetic studies and manipulations of sweet orange more feasible.


2019 ◽  
Author(s):  
Remi L. Gratacap ◽  
Tim Regan ◽  
Carola E. Dehler ◽  
Samuel A.M. Martin ◽  
Pierre Boudinot ◽  
...  

1AbstractGenome editing is transforming bioscience research, but its application to non-model organisms, such as farmed animal species, requires optimisation. Salmonids are the most important aquaculture species by value, and improving genetic resistance to infectious disease is a major goal. However, use of genome editing to evaluate putative disease resistance genes in cell lines, and the use of genome-wide CRISPR screens is currently limited by a lack of available tools and techniques. In the current study, an optimised protocol using lentivirus transduction for efficient integration of constructs into the genome of a Chinook salmon (Oncorhynchus tshwaytcha) cell line (CHSE-214) was developed. As proof-of-principle, two target genes were edited with high efficiency in an EGFP-Cas9 stable CHSE cell line; specifically, the exogenous, integrated EGFP and the endogenous RIG-I locus. Finally, the effective use of antibiotic selection to enrich the successfully edited targeted population was demonstrated. The optimised lentiviral-mediated CRISPR method reported here increases possibilities for efficient genome editing in salmonid cells, in particular for future applications of genome-wide CRISPR screens for disease resistance.


2017 ◽  
Author(s):  
Philippe E. Mangeot ◽  
Valérie Risson ◽  
Floriane Fusil ◽  
Aline Marnef ◽  
Emilie Laurent ◽  
...  

AbstractProgrammable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.


2020 ◽  
Vol 2 ◽  
Author(s):  
Limin Hu ◽  
Olalekan Amoo ◽  
Qianqian Liu ◽  
Shengli Cai ◽  
Miaoshan Zhu ◽  
...  

Rapeseed is one of the world's most important sources of oilseed crops. Single nucleotide substitution is the basis of most genetic variation underpinning important agronomic traits. Therefore, genome-wide and target-specific base editing will greatly facilitate precision plant molecular breeding. In this study, four CBE systems (BnPBE, BnA3A-PBE, BnA3A1-PBE, and BnPBGE14) were modified to achieve cytidine base editing at five target genes in rapeseed. The results indicated that genome editing is achievable in three CBEs systems, among which BnA3A1-PBE had the highest base-editing efficiency (average 29.8% and up to 50.5%) compared to all previous CBEs reported in rapeseed. The editing efficiency of BnA3A1-PBE is ~8.0% and fourfold higher, than those of BnA3A-PBE (averaging 27.6%) and BnPBE (averaging 6.5%), respectively. Moreover, BnA3A1-PBE and BnA3A-PBE could significantly increase the proportion of both the homozygous and biallelic genotypes, and also broaden the editing window compared to BnPBE. The cytidine substitution which occurred at the target sites of both BnaA06.RGA and BnaALS were stably inherited and conferred expected gain-of-function phenotype in the T1 generation (i.e., dwarf phenotype or herbicide resistance for weed control, respectively). Moreover, new alleles or epialleles with expected phenotype were also produced, which served as an important resource for crop improvement. Thus, the improved CBE system in the present study, BnA3A1-PBE, represents a powerful base editor for both gene function studies and molecular breeding in rapeseed.


Sign in / Sign up

Export Citation Format

Share Document