scholarly journals Exogenous Putrescine Enhances Salt Tolerance and Ginsenosides Content in Korean Ginseng (Panax ginseng Meyer) Sprouts

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1313
Author(s):  
Md. Jahirul Islam ◽  
Byeong Ryeol Ryu ◽  
Md. Obyedul Kalam Azad ◽  
Md. Hafizur Rahman ◽  
Md. Soyel Rana ◽  
...  

The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.

2007 ◽  
Vol 56 (1-6) ◽  
pp. 201-206 ◽  
Author(s):  
R. S. Rawat ◽  
S. Nautiyal

Summary A plantation trial of six selected clones of Dalbergia sissoo Roxb. laid out in randomized block design at four sites in northern India during July, 1996 was evaluated for growth, physiological and biochemical parameters. Genotype-site interactions were significant for collar diameter increment, photosynthetic rate, transpiration rate, stomatal conductance, photosynthetic pigments, total soluble protein, total soluble sugar and starch content at 5 per cent level of significance. The variability estimates for these characters also indicated strong genetic control than the environment. However, stomatal conductance amongst these clones exhibited strong influence of environment that was non-additive in nature.


Author(s):  
Apurba Pal ◽  
Debjani Dutta ◽  
Anjan Kumar Pal ◽  
Sunil Kumar Gunri

Aims: To better understand the physiological and biochemical mechanisms in the light of antioxidative enzymes activity under salinity stress between tolerant and susceptible genotypes of groundnut. Study Design: Completely Randomized Design. Place and Duration of Study: The laboratory experiment was carried out in the departmental laboratory of Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, Nadia, and West Bengal during the year 2017-18. Methodology: A controlled study was conducted to screen 26 genotypes of groundnut under 200 mM NaCl salinity stress. Fourteen-day old seedlings were subjected to salinity treatment. For this, the modified Hoagland nutrient solution containing 200 mM NaCl (osmotic potential: -0.8 MPa) was applied in each case and the pH was adjusted to 6.3. The treatments were repeated on every third day. Control set without salinity stress was also maintained similarly in each case for comparison of results. Results: The salt tolerance index or STI of the genotypes ranged from 47.57% to 96.40%. Out of all the genotypes KDG-197 (STI= 96.40%) was found to be the most tolerant under a salinity stress of 200 mM NaCl and it was closely followed by R 2001-2 (STI=87.92%), VG 315 (STI=84.05%), TCGS 1157 (STI=77.59%) and TG 51 (STI=73.67%). While the genotypes Girnar 3 (STI= 47.57%), OG 52-1 (STI=49.09%), TVG 0856 (STI= 49.28%) and J 86 (STI= 50.66%) were the most susceptible genotypes based on their relative performance under stress in respect of total dry weight. It has been noted further that, out of the nine genotypes, enhancement of antioxidative enzyme like super oxide dismutase (SOD), guaiacol peroxidase (GPOX) and catalase (CAT) activity was recorded maximally in tolerant genotype KDG 197 (64.18%, 71.74% and 52.82% increase over control respectively) and R 2001-2 (53.68 %, 93.48% and 53.96 % increase over control respectively) but the activity of these enzyme in the four susceptible genotypes declined considerably under salinity treatment. Conclusion: Tolerant genotypes of groundnut in general registered much higher activities of antioxidative enzymes in their leaves as compared to the susceptible genotype under high salinity stress.


2017 ◽  
Vol 142 (6) ◽  
pp. 476-483 ◽  
Author(s):  
Xin Song ◽  
Suo-min Wang ◽  
Yiwei Jiang

Perennial ryegrass (Lolium perenne) is a popular cool-season and forage grass around the world. Salinity stress may cause nutrient disorders that influence the growth and physiology of perennial ryegrass. The objective of this study was to identify the genotypic variations in growth traits and nutrient elements in relation to salinity tolerance in perennial ryegrass. Eight accessions of perennial ryegrass [PI265351 (Chile), PI418707 (Romania), PI303012 (UK), PI303033 (The Netherlands), PI545593 (Turkey), PI577264 (UK), PI610927 (Tunisia), and PI632590 (Morocco)] were subjected to 0 (control, no salinity) and 300 mm NaCl for 10 d in a greenhouse. Across accessions, salinity stress decreased plant height (HT), leaf fresh weight (LFW), leaf dry weight (LDW), leaf water concentration (LWC), and concentration of N, C, Ca2+, Cu2+, K+, Mg2+, and K+/Na+ ratio and increased Na+ concentration. Negative correlations were found between C and Na+, whereas positive correlations of K+/Na+ with C and N were found under salinity treatment. The principal component analysis (PCA) showed that the first, second, and third principal components explained 40.2%, 24.9%, and 13.4% variations of all traits, respectively. Based on loading values from PCA analysis, LWC, Na+ concentration, and K+/Na+ ratio were chosen to evaluate salinity tolerance of accessions, and eight accessions were divided into the tolerant, moderate, and sensitive groups. The tolerant group had relatively higher LWC and K+/Na+ ratio and concentrations of C, P, and Fe2+ and lower Na+ concentrations than the other two groups, especially the sensitive groups. The result suggested that lower Na+ accumulation and higher K+/Na+ ratio and LWC were crucial strategies for achieving salinity tolerance of perennial ryegrass.


Author(s):  
Thang Thanh Tran ◽  
Trinh Thi Diem Phan ◽  
Huong Thanh Tran

In this study, NaCl at varrious concentrations of 4 – 10 g/L was used to investigate the salt tolerance of in vitro shoot cuttings of Chrysanthemum indicum. Morphological, physiological and biochemical changes during the response of shoot cuttings in the salinity stress were analyzed. NaCl at 6 g/L reduced the development of shoot cuttings. Under salinity stress conditions, there have just a little reduction of the chloroplast in parenchymal cells near the midrib of leaf before they turn brown and die. Besides, carotenoid, starch content, and photosynthesis intensity were decreased. In contrast, respiration rate, proline and total soluble sugar content, and the activity of IAA and gibberellin were strongly increased. The application of IAA 0.25 mg/L, zeatin 0.1 mg/L and GA3 0.1 mg/L improved the shoot development in the salinity stress condition. Shoots in MS medium supplemented with BA 0.2 mg/L, NAA 2 mg/L and NaCl 6 g/L grow better in salinity stress condition.


2020 ◽  
Vol 47 (4) ◽  
pp. 342 ◽  
Author(s):  
Muhammad Ali Raza ◽  
Ling Yang Feng ◽  
Nasir Iqbal ◽  
Imran Khan ◽  
Tehseen Ahmad Meraj ◽  
...  

In China, maize-soybean relay-intercropping system follow the two main planting-patterns: (i) traditional relay-intercropping; maize-soybean equal row planting, where soybean experience severe maize shading on both sides of plants, and (ii) modern relay-intercropping; narrow-wide row planting, in this new planting pattern only one side of soybean leaves suffer from maize shading. Therefore, in this study, changes in morphological traits, cytochrome content, photosynthetic characteristics, carbon status, and the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were investigated at 30 days after treatment (DAT) in shade-tolerant soybean variety Nandou-12 subjected to three different types of shading conditions; normal light (NL, all trifoliate-leaves of soybean plants were under normal light); unilateral shade (US, all right-side trifoliate-leaves of soybean plants from top to bottom were under shade while all the left-side of trifoliate-leaves from top to bottom were in normal light); bilateral shade (BS, all trifoliate-leaves of soybean plants were under complete shade). Compared with BS, US conditions decreased plant height and increased stem diameter, leaf area, and biomass at 30 DAT. Biomass distribution rates to stem, petiole and leaves, and photosynthetic characteristics were markedly improved by the US at all sampling stages, which proved to be a better growing condition than BS with respect to shade tolerance. The enhanced net photosynthesis and transpiration rates in the left-side leaves (LS) of soybean plants in US, when compared with the LS in BS, allowed them to produce higher total soluble sugar (by 70%) and total soluble protein (by 17%) at 30 DAT which reduce the adverse effects of shading at right-side leaves (RS) of the soybean plants. Similarly, soybean leaves under US accumulated higher proline content in US than the leaves of BS plants. Soybean leaves grown in shading conditions (LS and RS of BS and RS of US) developed antioxidative defence-mechanisms, including the accelerated activities of SOD, POD, APX, and CAT. Comparatively, soybean leaves in US displayed lower activity levels of the antioxidative enzymes than the leaves of BS plants, showing that soybean plants experienced less shade stress in US as compared with BS treatment. Overall, these results indicate that the association of improved photosynthetic characteristics, sugar and protein accumulation and optimum antioxidative defences could be an effective approach for growing soybean in intercropping environments.


2021 ◽  
Vol 13 (17) ◽  
pp. 9796
Author(s):  
Ibrahim S. Abdallah ◽  
Mohamed A. M. Atia ◽  
Amira K. Nasrallah ◽  
Hossam S. El-Beltagi ◽  
Farida F. Kabil ◽  
...  

Potato is an economically important vegetable crop in Egypt. Weed infestation, especially broad-leafed, during the vegetative growth stage substantially affects both crop yield and tuber quality. In the current study, the impact of new ready-mix pre-emergent herbicides on broadleaf weeds, tuber yield, and quality was evaluated. The two-year field experiment comprised the following treatments: (1) Un-weeded control, (2) Hand hoeing, (3) Sencor, (4) Ecopart, (5) Zeus, (6) Kroki, and (7) Flomex. The results showed that weed control treatments significantly reduced the weed density compared to un-weeded control and the herbicides efficacy reached over 90%. The herbicidal treatments also significantly increased the activity of antioxidant enzymes peroxidases (POX) and catalase (CAT) and improved the non-enzymatic antioxidant (carotenoids) compared to un-weeded control. Conversely, the higher content of malondialdehyde (MDA) in potato leaves was obtained for un-weeded control. Moreover, weed control treatments caused significant enhancement in plant growth parameters, yield, and its components in addition to tuber quality of potato. Compared to the un-weeded control, maximum tuber yield was observed in Flomex followed by Ecopart, Kroki, Zeus, and Sencor, respectively. The higher number of tubers and total yield were recorded in plants treated with Flomex plus compared to all the other treatments. Higher content of total soluble sugar, total soluble protein, and total starch content was observed in weed control treatments compared with un-weeded control. Based on Pearson’s correlation and heatmap analysis, the changes in agro-physiological parameters data are linked to the herbicidal treatments. The results indicate that the applied herbicides could be alternative products for Sencor and an option for controlling broadleaved weeds. However, further studies are needed to ensure their efficacy and safety under other conditions.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582199850
Author(s):  
Iqbal Hussain ◽  
Kanwal Rehman ◽  
Muhammad Arslan Ashraf ◽  
Rizwan Rasheed ◽  
Javeria Gul ◽  
...  

Pharmaceutical wastes are environmental micro pollutant and potential risk for the ecosystem. Therefore, the present study was planned to find out the effects of different pharmaceutical effluent (PE) regimes on growth, secondary metabolism, and oxidative defense in 2 carrot lines. The seeds of 2 carrot lines (DC-3 and T-29) were spread in plastic pots containing sandy loam soil. The design of experiment was completely randomized with 3 replicates per treatment. At vegetative stage, plants were irrigated with 5 different doses (control), 25%, 50%, 75% and 100%) of PE on every 3-day interval, while control plants were irrigated with canal water. The carrot roots were harvested after 25 days’ application of the treatments to determine various attributes. High concentration of PE caused a substantial decline in growth, beta carotenoids, anthocyanin, total soluble protein, free amino acids, total soluble sugar, phenolic and flavonoid contents and an increase in proline, levels of H2O2 and MDA, activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in both lines. Moreover, PE caused significant reduction in the levels of essential nutrients (K+, Ca2+) and increased in Na+ content. However, T-29 line was found to be more PE tolerant because it had less H2O2, MDA and ascorbic acid contents. Thus, our findings showed that diluted PE (25%) could not be used for irrigation to increase the growth of plants in nutrients deprived environments without using bio filtration and biocarbon sorption technologies for treatments.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1511
Author(s):  
Md. Jahirul Islam ◽  
Ji Woong Kim ◽  
Mst. Kohinoor Begum ◽  
Md. Abu Taher Sohel ◽  
Young-Seok Lim

The present study was conducted to examine the adaptability of 11 sugar beet cultivars grown under drought stress in the controlled glasshouse. The treatment was initiated on 30-day-old sugar beet plants where drought stress was made withholding water supply for consecutive 10 days while control was done with providing water as per requirement. It was observed that drought stress expressively reduced plant growth, photosynthetic pigments, and photosynthetic quantum yield in all the cultivars but comparative better results were observed in S1 (MAXIMELLA), S2 (HELENIKA), S6 (RECODDINA), S8 (SV2347), and S11 (BSRI Sugarbeet 2) cultivars. Besides, osmolytes like proline, glycine betaine, total soluble carbohydrate, total soluble sugar, total polyphenol, total flavonoid, and DPPH free radical scavenging activity were remarkably increased under drought condition in MAXIMELLA, HELENIKA, TERRANOVA, GREGOIA, SV2348, and BSRI Sugar beet 2 cultivars. In contrast, activities of enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were significantly decreased in all, while the cultivars SV2347, BSRI Sugar beet 1 and BSRI Sugar beet 2 were found with increased ascorbate peroxidase (APX) activity under drought condition. In parallel, polyphenol oxidase (PPO) was increased in all cultivars except HELENIKA. Overall, the cultivars HELENIKA, RECODDINA, GREGOIA, SV2347, SV2348, BSRI Sugar beet 1, and BSRI Sugar beet 2 were found best fitted to the given drought condition. These findings would help further for the improvement of stress adaptive sugar beet cultivars development in the breeding program for drought-prone regions.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Pedro García-Caparrós ◽  
Cristina Velasquez Espino ◽  
María Teresa Lao

The reuse of drainages for cultivating more salt tolerant crops can be a useful tool especially in arid regions, where there are severe problems for crops water management. Dracaena deremensis L. plants were cultured in pots with sphagnum peat-moss and were subjected to three fertigation treatments for 8 weeks: control treatment or standard nutrient solution (D0), raw leachates from Chrysalidocarpus lutescens H. Wendl plants (DL) and the same leachate blending with H2O2 (1.2 M) at 1% (v/v) (DL + H2O2). After harvesting, ornamental and biomass parameters, leaf and root proline and total soluble sugar concentration and nutrient balance were assessed in each fertigation treatment. Plant height, leaf and total dry weight had the highest values in plants fertigated with leachates with H2O2, whereas root length, leaf number, RGB values and pigment concentration declined significantly in plants fertigated with leachates from C. lutescens with or without H2O2. The fertigation with leachates, regardless of the presence or absence of H2O2 increased root and leaf proline concentration. Nevertheless, root and leaf total soluble sugar concentration did not show a clear trend under the treatments assessed. Regarding nutrient balance, the addition of H2O2 in the leachate resulted in an increase in plant nutrient uptake and efficiency compared to the control treatment. The fertigation with leachates with or without H2O2 increased nitrogen and potassium leached per plant compared to plants fertigated with the standard nutrient solution. The reuse of drainages is a viable option to produce ornamental plants reducing the problematic associated with the water consumption and the release of nutrients into the environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


Sign in / Sign up

Export Citation Format

Share Document