scholarly journals Effect of Salinity Stress on Antioxidative Enzyme Activity in the Leaves of Tolerant and Susceptible Genotypes of Groundnut

Author(s):  
Apurba Pal ◽  
Debjani Dutta ◽  
Anjan Kumar Pal ◽  
Sunil Kumar Gunri

Aims: To better understand the physiological and biochemical mechanisms in the light of antioxidative enzymes activity under salinity stress between tolerant and susceptible genotypes of groundnut. Study Design: Completely Randomized Design. Place and Duration of Study: The laboratory experiment was carried out in the departmental laboratory of Plant Physiology, Bidhan Chandra Krishi Viswavidyalaya (BCKV), Mohanpur, Nadia, and West Bengal during the year 2017-18. Methodology: A controlled study was conducted to screen 26 genotypes of groundnut under 200 mM NaCl salinity stress. Fourteen-day old seedlings were subjected to salinity treatment. For this, the modified Hoagland nutrient solution containing 200 mM NaCl (osmotic potential: -0.8 MPa) was applied in each case and the pH was adjusted to 6.3. The treatments were repeated on every third day. Control set without salinity stress was also maintained similarly in each case for comparison of results. Results: The salt tolerance index or STI of the genotypes ranged from 47.57% to 96.40%. Out of all the genotypes KDG-197 (STI= 96.40%) was found to be the most tolerant under a salinity stress of 200 mM NaCl and it was closely followed by R 2001-2 (STI=87.92%), VG 315 (STI=84.05%), TCGS 1157 (STI=77.59%) and TG 51 (STI=73.67%). While the genotypes Girnar 3 (STI= 47.57%), OG 52-1 (STI=49.09%), TVG 0856 (STI= 49.28%) and J 86 (STI= 50.66%) were the most susceptible genotypes based on their relative performance under stress in respect of total dry weight. It has been noted further that, out of the nine genotypes, enhancement of antioxidative enzyme like super oxide dismutase (SOD), guaiacol peroxidase (GPOX) and catalase (CAT) activity was recorded maximally in tolerant genotype KDG 197 (64.18%, 71.74% and 52.82% increase over control respectively) and R 2001-2 (53.68 %, 93.48% and 53.96 % increase over control respectively) but the activity of these enzyme in the four susceptible genotypes declined considerably under salinity treatment. Conclusion: Tolerant genotypes of groundnut in general registered much higher activities of antioxidative enzymes in their leaves as compared to the susceptible genotype under high salinity stress.

Author(s):  
Apurba Pal ◽  
Anjan Kumar Pal

Salinity can affect different physiological activity of plant in various ways. A controlled study was conducted to screen 26 genotypes of groundnut under 200mM NaCl salinity stress. The salt tolerance index or STI of the genotypes ranged from 47.57% to 96.40%. Out of all the genotypes KDG-197 (STI= 96.40%) was found to be the most tolerant under a salinity stress of 200 mM NaCl and it was closely followed by R 2001-2 (STI=87.92%), VG 315 (STI=84.05%), TCGS 1157 (STI=77.59%) and TG 51 (STI=73.67%). While the genotypes Girnar 3 (STI= 47.57%), OG 52-1 (STI=49.09%), TVG 0856 (STI= 49.28%) and J 86 (STI= 50.66%) were the most susceptible genotypes based on their relative performance under stress in respect of total dry weight. It has been noted further that out of the nine genotypes, KDG 197 registered the minimum reduction (4.51% over control, 2.70% over control) in total chlorophyll and sugar accumulation respectively under NaCl stress whereas, Girnar 3 recorded the highest reduction in both parameters (60.00%, 70.32% over control) respectively, under saline condition. The genotype KDG 197 and R 2001-2 accounted for the highest increase in soluble protein and proline content in their leaves (144.02%, 780.16% over control) respectively than Girnar 3. KDG 197 recorded the minimum (3.39%) increase in lipid peroxidation under stress followed by R 2001-2 with an increase of 13.04% over control plants. In contrast, Girnar 3 registered the highest increase of TBARS content and electrolyte leakage (44.44%, 31.47% over control respectively) indicating maximum membrane damage but R 2001-2 recorded the minimum (3.00%) increase in electrolyte leakage percentage than Girnar 3 (31.47% over control) followed by OG 52-1 (26.14% over control) under stress. So, better osmotic adjustment through accumulation of proline, less membrane damage the leaves helped the tolerant genotypes to sustain under salinity stress in a better way than the susceptible genotypes.


Author(s):  
Md. Omar Kayess ◽  
Md. Lutfar Rahman ◽  
Kawsar Ahmed ◽  
Md. Riad Khan ◽  
Md. Sahadat Hossan ◽  
...  

An in-vitro test was conducted at the laboratory of the Department of Genetics and Plant Breeding, Hajee Mohammad Danesh Science and University (HSTU), Dinajpur, Bangladesh to screen out the tomato genotypes were screened for salt tolerance during germination. The test was conducted in the Completely Randomized Design (CRD) utilizing three replications. Ten tomato genotypes specifically BARI Tomato-2, BARI Tomato-3, BARI Tomato-5, BARI Tomato-11, BARI Tomato-14, BARI Tomato-16, Mintoo, Unnoyon, Mintoo Super and Sawsan were germinated on sand bed watered with five levels of salinity treatment i.e. 0, 4,8,12 and 16 dSm-1. The test was laid out in completely randomized design (CRD) with three replications. The days to 50% germination was maximum in Unnoyon genotype in all the treatments [1]. BARI Tomato-3 showed the minimum value in most of the cases. Root and shoot parameters like root length, shoot length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, ratio on root and shoot fresh weight, ratio on root and shoot dry weight were the highest in BARI Tomato-2, Mintoo and Unnoyon, in contrast, the lowest performance of these traits were revealed in BARI Tomato-16 and BARI Tomato-3 at higher salinity treatment (12 and 16 dSm-1) than other genotypes in most of the cases. The overall results of the experiment exhibited BARI Tomato-2, Mintoo and Unnoyon found to be the more tolerant genotypes at higher salinity stress in respect of days to 50% germination and root and shoot characters than other genotypes.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1313
Author(s):  
Md. Jahirul Islam ◽  
Byeong Ryeol Ryu ◽  
Md. Obyedul Kalam Azad ◽  
Md. Hafizur Rahman ◽  
Md. Soyel Rana ◽  
...  

The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.


2014 ◽  
Vol 22 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Omid Younesi ◽  
Ali Moradi

AbstractThe experiment was conducted in order to study effects of seeds priming with gibberellic acid (GA3) at 0, 3, 5 and 8 mM on germination, growth and antioxidant enzymes activity in alfalfa seedlings under salinity stress (200 mM NaCl). All control seeds germinated. The rate of germinated seeds was reduced to 48% in the presence of NaCl, and increased to 76% after seeds priming with 5 mM GA3. Priming with 5 mM GA3 was also correlated with an increase of dry weight of seedlings derived from both stressed and non-stressed seeds as well as with the reduction of electrolyte leakage (EL) and malondialdehyde (MDA) level in salt stressed seedlings. The activity of superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase in primed and non-primed seeds increased in the presence of NaCl and after priming of seeds with 5 mM GA3, whereas only small effect on glutathione reductase activity in both primed and non-primed seeds was observed. The total ascorbate level was higher in both stressed and non-stressed seedlings from primed seeds. These results suggest that GA3 priming might increase the salt tolerance of alfalfa seedlings through enhancing the activities of antioxidant enzymes and reducing the membrane damage as estimated using biomarkers, EL index and MDA content.


2014 ◽  
Vol 47 (1) ◽  
pp. 23-29
Author(s):  
S.A. Tabatabaei

ABSTRACT In order to investigate salinity stress on seed reserve utilization and seedling growth of treated seeds of barley (Hordeum vulgare L.), an experiment was carried out. Factorial experiment was carried out in completely randomized design with three replicates. To create salinity stress, NaCl in osmotic levels at 0 (as control), -4, -8, -12 and -16 bar were used. For seed priming, gibberellin (GA) 50 ppm was used. Our results showed that treatment × drought interaction on these traits: germination percentage, weight of utilized (mobilized) seed, seed reserve utilization efficiency, seedling dry weight and seed reserve depletion percentage were significant. The highest germination percentage, weight of utilized (mobilized) seed, seed reserve utilization efficiency, seedling dry weight and seed reserve depletion percentage were attained from priming by gibberellin at control conditions. Thus, priming increased characteristics as compared to the unprimed. Priming improved seed reserve utilization such as: weight of utilized (mobilized) seed reserve, seed reserve depletion percentage, seed reserve utilization efficiency and seedling growth in barley under salinity stress.


Author(s):  
Juwarno Juwarno ◽  
Tata Brata Suparjana ◽  
Muachiroh Abbas

Mahameru cultivar is high salinity tolerant cultivar. The previous study result showed Mahameru cultivar could tolerate 140mM NaCl, but Cilacap Coast salinity levels often reaching 200mM NaCl. A research of salinity stress on Mahameru cultivar at 200 mM NaCl have not conducted yet. Therefore to conduct the research of Mahameru at high salinity stress to obtained high salinity tolerant soybean cultivar.   The observed variables are anatomy (epidermis thickness, the density of stomata and trichomes, palisade thickness) physiology (the dry weight of roots and canopy, the content of chlorophyll a and b) Production (whole pod, total filled pod, total empty pod, weight per one-hundred beans). The salinity treatment was 0, 50,100, 150, 200 mM NaCl given at three days before planting and twenty-one days after planting. The data of anatomy and physiology was taken at forty-five days after planting. The production data was taken when soybean plants turned brown. The result indicates that salinity affects anatomy characteristic of leaf, higher the salinity increasing epidermis thickness and the density of stomata and trichomes. Salinity affected the content of chlorophyll a and b. Higher the salinity increased the content of chlorophyll a and b. Salinity did not affect soybean production. Based on this study Mahameru cultivar is resistant to salinity up to 200 mM NaCl. The benefit of this research help to enhance national soybean production with utilization coastal land for soybean planting Mahameru cultivar.         


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2477
Author(s):  
Rehab El-Dakak ◽  
Weam El-Aggan ◽  
Ghadah Badr ◽  
Amira Helaly ◽  
Amel Tammam

Strategic implementation of vermicompost as safe biofertilizer besides defensing saline soils offer dual function solving problems in developing countries. The current study aims to utilize vermicompost (VC) for amelioration of 200mM NaCl in Vicia faba Aspani cultivar and investigate the molecular role of salt overly sensitive pathway (SOS1). The experiment was conducted following a completely randomized design with three replicates. Treatments include 0; 2.5; 5; 10; 15% dried VC intermingled with soil mixture (clay: sand; 1:2) and/or 200 mM NaCl. The results show that salinity stress decreased broad bean fresh and dry weight; and K+/Na+. However, malonedialdehyde and H2O2 contents; increased. Application of 10% VC and salinity stress increases Ca2+ (41% and 50%), K+/Na+ (125% and 89%), Mg2+ (25% and 36%), N (8% and 11%), indole acetic acid (70% and 152%) and proteins (9% and 13%) for root and shoot, respectively, in comparison to salt treated pots. Moreover, all examined enzymatic antioxidants and their substrates increased, except glutathione reductase. A parallel decrease in abscisic acid (75% and 29%) and proline (59% and 58%) was also recorded for roots and leaves, respectively. Interestingly, the highly significant increase in gene expression of SOS1 (45-fold) could drive defense machinery of broad bean to counteract 200 mM NaCl.


2017 ◽  
Vol 142 (6) ◽  
pp. 476-483 ◽  
Author(s):  
Xin Song ◽  
Suo-min Wang ◽  
Yiwei Jiang

Perennial ryegrass (Lolium perenne) is a popular cool-season and forage grass around the world. Salinity stress may cause nutrient disorders that influence the growth and physiology of perennial ryegrass. The objective of this study was to identify the genotypic variations in growth traits and nutrient elements in relation to salinity tolerance in perennial ryegrass. Eight accessions of perennial ryegrass [PI265351 (Chile), PI418707 (Romania), PI303012 (UK), PI303033 (The Netherlands), PI545593 (Turkey), PI577264 (UK), PI610927 (Tunisia), and PI632590 (Morocco)] were subjected to 0 (control, no salinity) and 300 mm NaCl for 10 d in a greenhouse. Across accessions, salinity stress decreased plant height (HT), leaf fresh weight (LFW), leaf dry weight (LDW), leaf water concentration (LWC), and concentration of N, C, Ca2+, Cu2+, K+, Mg2+, and K+/Na+ ratio and increased Na+ concentration. Negative correlations were found between C and Na+, whereas positive correlations of K+/Na+ with C and N were found under salinity treatment. The principal component analysis (PCA) showed that the first, second, and third principal components explained 40.2%, 24.9%, and 13.4% variations of all traits, respectively. Based on loading values from PCA analysis, LWC, Na+ concentration, and K+/Na+ ratio were chosen to evaluate salinity tolerance of accessions, and eight accessions were divided into the tolerant, moderate, and sensitive groups. The tolerant group had relatively higher LWC and K+/Na+ ratio and concentrations of C, P, and Fe2+ and lower Na+ concentrations than the other two groups, especially the sensitive groups. The result suggested that lower Na+ accumulation and higher K+/Na+ ratio and LWC were crucial strategies for achieving salinity tolerance of perennial ryegrass.


2019 ◽  
Vol 7 (1) ◽  
pp. 3-10
Author(s):  
Arif Rahmadi ◽  
Yeni Mulyani ◽  
Muhammad Wahyudin Lewaru

Chaetoceros muelleri is a microalgae class of Bacillariophyta (diatom) which is generally only used as feeds for fishes and shellfish larvae. Nevertheless, the biochemical content of this species is quite high and has the potential to be developed. This research aims to explain the effect of different salinity on the growth and lipid content of Chaetoceros muelleri cultured in a continuous photobioreactor. This research was carried out in August 2018 - February 2019. The research was conducted at the Laboratory of Marine Microbiology and the Laboratory of Bioprocess and Bioprospection of Natural Materials, Faculty of Fisheries and Marine Sciences, Padjadjaran University. The samples of Chaetoceros muelleri isolates were obtained from the Jepara Brackish Water Aquaculture Center. The methods used for the study was a ‘Completely Randomized Design’ (CRD) with four treatments. The salinity used is 15, 25, 35 and 45 ppt. The main parameters observed were growth and lipid content, while the supporting parameters were temperature, and pH. The results of this study showed that the highest lipid content was a salinity treatment of 35 ppt with a value of 25.37% of total dry weight obtained at the end of the culture. Based on growth, the highest density occurred in 25 ppt salinity with a maximum density of 3.80 ± 0.49 x 106 cells. ml-1 and maximum growth rate of 0.36 ± 0.008 div. day-1


2014 ◽  
Vol 1 (1) ◽  
pp. 32-39
Author(s):  
Saima Ibrahim ◽  
Faiza Naz

The given investigation was undertaken to evaluate the performance of black gram (vigna mungo L.) under different salinity levels (i.e. 50mM, 100mM and 150mM NaCl) and to find out the remedial effect of two doses of S (i.e. 2mM and 4mM) against salinity stress on growth of studied crop by providing tolerance against salinity stress. The experiment was carried out in Botany department, Jinnah University for women, Nazimabad, Karachi, in controlled laboratory condition by using plate culture technique followed as completely randomized design with three replication of each treatment. The observation of given research showed that the percentages of shoot and root length and Fresh and dry seedling weights were higher in control treatment. The low (50mM NaCl) level of salinity treatment had no deleterious effects on plant vegetative growth, while at higher concentration of NaCl (100mM), all the growth parameters were drastically reduced. Both application rates of MgSO4 were found satisfactory to eliminate the negative effect of saline environment inside rhizosphere by promoting plant tolerance against stress thus support treated plants growth and development.


Sign in / Sign up

Export Citation Format

Share Document