scholarly journals Influence of Curly Leaf Trait on Cottonseed Micro-Nutrient Status in Cotton (Gossypium hirsutum L.) Lines

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1701
Author(s):  
Nacer Bellaloui ◽  
Rickie B. Turley ◽  
Salliana R. Stetina

Cottonseed is a source of nutrients, including protein, oil, and macro- and micro-nutrients. Micro-nutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) are essential for plant and human health. Deficiencies of these micro-nutrients in soil lead to poor crop production and poor seed quality. Micro-nutrient deficiencies in the human diet lead to malnutrition and serious health issues. Therefore, identifying new cotton lines containing high nutritional qualities such as micro-nutrients, and understanding plant traits influencing micro-nutrients are essential. The objective of this research was to investigate the effects of leaf shape (curly leaf: CRL) on cottonseed B, Cu, Fe, Mn, Ni (nickel), and Zn in two near-isogenic cotton lines differing in leaf shape (DP 5690 wild-type with normal leaves and DP 5690 CRL). We also used Uzbek CRL, the source of the curly leaf trait, for comparison. A field experiment was conducted in 2014 and 2015 in Stoneville, MS, USA. The experiment was a randomized complete block design with three replicates. The results showed that, in 2014, both DP 5690 wild-type and Uzbek CRL had higher seed B, Cu, Fe, and Ni than in DP 5690 CRL. The accumulation of Mn and Zn in seeds of DP 5690 CRL was higher than in DP 5690 wild-type and Uzbek CRL. However, in 2015, the concentrations of B, Cu, Fe, and Ni, including Mn and Zn, were higher in both DP 5690 wild-type and Uzbek CRL than in DP 5690 CRL. Positive and negative correlations existed in 2014; however, only positive correlations existed between all nutrients in 2015. This research demonstrated that leaf shape can alter cottonseed micro-nutrients status. As Uzbek CRL behaved similar to wild-type, both leaf shape and other factors contributed to the alteration in seed micronutrients, affecting seed nutritional qualities. Therefore, leaf-shape partially contributed to the changes in micro-nutrients in cottonseed. The negative and positive correlations in 2014, and only positive correlations in 2015, were likely due to the heat difference between 2014 and 2015 as 2015 was warmer than 2014. Significant levels of seed micro-nutrients were shown between these lines, providing opportunities for breeders to select for high seed micro-nutrients in cotton. Additionally, the current research provides researchers with physiological information on the impact of leaf shape on seed nutritional quality. The leaf shape trait can also be used as a tool to study leaf development, physiological, biochemical, and morphological processes.

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 525
Author(s):  
Nacer Bellaloui ◽  
Rickie B. Turley ◽  
Salliana R. Stetina

Cottonseed is an important source of protein, oil, and minerals for human health and livestock feed. Therefore, understanding the physiological and genetic traits influencing the nutrient content is critical. To our knowledge, there is no information available on the effects of leaf shape—curly leaf (CRL)—on cottonseed protein, oil, and minerals. Therefore, the objective of the current research was to investigate the effect of the curly leaf trait on cottonseed protein, oil, and minerals in cotton lines differing in leaf shape. Our hypothesis was that since leaf shape is known to be associated with nutrient uptake, assimilation, and photosynthesis process, leaf shape can influence seed protein, oil, and minerals. A two-year field experiment using two curly leaf lines (Uzbek CRL and DP 5690 CRL) and one normal leaf (DP 5690 wild type) line was conducted in 2014 and 2015 in Stoneville, MS, USA. The experiment was a randomized complete block design with three replicates. The results showed that both Uzbek CRL and DP 5690 wild type lines had higher seed oil, and nutrients N, P, K, and Mg than DP 5690 CRL. Calcium was higher in DP 5690 CRL for two years and protein was only higher than the parents in 2015. Consistent significant positive and negative correlations between some nutrients were observed, which may be due to environmental conditions, especially heat. This indicates that curly leaf trait may partially regulate the accumulation of these nutrients in seeds. The results demonstrated that leaf shape trait—curly leaf—can affect cottonseed nutritional qualities. This research is important to breeders for cotton selection for high seed oil or protein, and to other researchers to further understand the genetic impact of leaf shapes on seed nutritional quality. It is also important for scientists to use leaf shape as a tool for physiological, biochemical, and morphological research related to leaf development.


Author(s):  
P. Masilamani ◽  
T. Eevera ◽  
T. Ramesh ◽  
S. Venkatesan

Background: The present investigation is an attempt to study the effect of different harvesting and threshing methods on germination and seedling vigour of dhaincha. The use of a combine harvester to harvest dhaincha will be an effective alternative method that has not been widely tried. However, work on different methods of harvesting and threshing of dhaincha is limited. Hence, a study was conducted to evaluate the impact of various harvesting and threshing methods on germination and seedling vigour of dhaincha. Methods: This study was conducted at Anbil Dharmalingam Agricultural College and Research Institute, TNAU, Tiruchirappalli, Tamil Nadu. The dhaincha crop was harvested and threshed using four different methods viz., manual harvesting and manual threshing, manual harvesting and threshing by tractor treading, manual harvesting and mechanical threshing and harvesting and threshing by combine harvester. The resultant seeds were tested for mechanical damage and germination potential. The experiment was laid in completely randomized block design. Germination was tested by roll towel method using 100 seeds in four replications. Germination percentage, root and shoot length were measured in seven days after sowing from ten randomly selected seedlings in each replication. For the estimation of dry matter production, ten seedlings were selected at random and kept in a hot air oven maintained at 85oC for 24 hours after measuring their root and shoot length and vigour index was calculated. Mechanical damage to seeds was observed by ferric chloride test. Seed recovery per cent was calculated based on the 100 kgs of dhaincha seeds were cleaned and graded treatment wise using cleaner cum grader and the seeds retained on the bottom sieve were weighed and expressed as per cent of total quantity of seed. Result: The results revealed that the significant difference was found among the different harvesting and threshing methods. The seeds harvested and threshed by manual method recorded 85 per cent germination followed by seeds harvested manually and threshed by mechanical threshing (84 per cent) and seeds harvested manually and threshed by tractor treading (80.5 per cent). The lowest germination of 80.0 per cent was recorded by combine harvesting. From this study, it could be inferred that combine harvester is a modern method for harvesting of dhaincha that saves time and labour when compared to all other methods.


2019 ◽  
Vol 2 (3) ◽  
pp. 7
Author(s):  
Dyah Priandini ◽  
Muhamad Rahmad Suhartanto ◽  
Abdul Qadir

Development of papaya fruit production is influenced by the availability of seed quality. High seed quality is maintained during seed storage. Estimation of vigor in relation to storability can be detected by accelerated aging test. This research aims to develop physicall accelerated aging test by, 1)determine the impact of physical accelerated aging on vigor and viability parameters on papaya seed variety Callina and Sukma, 2) determine the levels of seed moisture content and effective period of physicall accelerated aging to predict vigor of papaya seed. This research was conducted at the Laboratory of Seed Science and Technology and Green House Leuwikopo, Department of Agronomy and Horticulture, IPB in January-May 2016 using a randomized complete block design with three replications. Seeds aged by the aging equipment MPC IPB 77-1 MMM. The results showed that the aging time decreased germination value in papaya seed variety Callina and Sukma with equation y=-0.1389x3+3.3333x2–25.25x+81.5 and y=0.0171x3+0.2028x2-9.9956x+81.095. Effective imbibition is 96 hour with moisture content 63-70% in both varieties. The effective of aging time treatment at 0x4, 1x4, 2x4, 3x4, dan 4x4 minutes.Keywords:imbibition, moisture content, viability, vigor


2003 ◽  
Vol 83 (2) ◽  
pp. 411-415 ◽  
Author(s):  
B. D. Gossen ◽  
D. A. Derksen

Two trials were conducted from 1996 to 1999; one at Indian Head, SK, to examine the impact of tillage management on the severity of ascochyta blight of lentil, caused by Ascochyta lentis (teleomorph Didymella lentis), and a second at Saskatoon, SK, to assess the impact of crop rotation. In 1995, the blight-susceptible lentil cv. Eston was seeded across both sites and later inoculated with blight-infested lentil residue to provide a uniform level of infection. Treatments were initiated in the spring of 1996. Ascochyta blight severity was assessed on each lentil plot during the growing season. Seed quality and yield were assessed each year. A split-block design was used to minimize movement of inoculum among plots over years. In the tillage management trial at Indian Head, the main plot treatments were 0, 1, or 2 yr between lentil crops, with spring wheat as the alternate crop; the subplot treatments were zero-till vs. conventional tillage. Ascochyta blight severity was substantially higher under zero-till than under conventional tillage in the continuous lentil treatment when conditions were conducive to blight development. However, tillage management had little effect on severity when there were 2 yr between successive lentil crops. We conclude that tillage management is unlikely to have an important impact on blight severity, except in rotations with short re-cropping intervals. In the crop rotation study at Saskatoon, the main plot treatments were two rotation sequences and the subplot treatments were three crop species (canola, barley, pea) planted in 1996. Rotation 1 was seeded to cv. Eston in 1997 and barley in 1998; Rotation 2 was seeded to barley in 1997 and cv. Eston in 1998. Both rotations were seeded to cv. Eston in 1999. Also, a plot seeded continuously to cv. Eston was included at one end of each replicate block as a control. Blight was more severe in continuous lentil than in the other crop rotations, and ascochyta blight levels in 1999 were lowest where barley followed the 1996 lentil crop for both Rotation 1 and 2. However, the intervening nonhost crop had little impact on seed infection or seed yield. We conclude that at least two nonhost crops between successive lentil crops are required to substantially reduce inoculum of A. lentis following a disease outbreak. Key words: Didymella lentis, zero-till management, fusarium root rot, Lens culinaris, barley, canola, field pea


Author(s):  
M Alauddin ◽  
GM Mohsin ◽  
AHMZ Ali ◽  
MK Rahman

A field experiment was conducted at the research farm of Charfasson Govt. College, Bhola, Bangladesh in rabi season in 2015-2016 to evaluate the impact of conjunctive use of chemical fertilizers with rice bran on concentration, uptake and seed quality of sunflower cv. BARI-2 (Keroni-2). The experiment was laid out in the randomized complete block design (RCBD) having sixteen treatments with three replications. The size of the plots were 3 m x 2 m. Treatments were T1 Control (- RB and -NPK), T2: 2.5 t RB ha-1, T3: 5.0 t RB ha-1,T4: 7.5 t RB ha-1, T5: N40P30K50 kg ha-1,T6: N80P60K100 kg ha-1, T7: N120P90K150 kg ha-1, T8: 2.5 t RB ha-1 + N40P30K50 kg ha-1, T9: 2.5 t RB ha-1 + N80P60K100 kg ha-1, T10: 2.5 t RB ha-1 + N120P90K150 kg ha-1, T11: 5.0 t RB ha-1 + N40P30K50 kg ha-1, T12: 5.0 t RB ha-1 + N80P60K100 kg ha-1, T13: 5.0 t RB ha-1 + N120P90K150 kg ha-1, T14: 7.5 t RB ha-1 + N40P30K50 kg ha-1, T15: 7.5 t RB ha-1 + N80P60K100 kg ha-1, T16: 7.5 t RB ha-1 + N120P90K150 kg ha-1. Results showed that the concentration, uptake and quality of seeds (oil and protein) of the crop increased with increasing rate of the amendments significantly (P<0.05) over the control and the variation between the treatments were also significant irrespective of the sources of amendments in most of the cases. Generally, combination of the treatments showed better performance than their individual application. Maximum values of NPKS concentration (%) in different organs of sunflower were 1.22, 0.35, 1.90, 0.18 for stem; 1.17, 0.35, 2.41, 0.16 for root; 3.98, 0.43, 4.28, 0.24 for leaf, 1.04, 0.65, 3.00, 0.22 for petiole; 2.16, 0.58, 2.21, 0.26 for inflorescence and 5.24, 0.83, 1.60, 0.47 for seed measured in treatments 5.0 t RB ha-1 + N120P90K150 kg ha-1 and 7.5 t RB ha-1 + N120P90K150 kg ha-1 in most of the cases. However, their uptake pattern also followed the same trend as in concentration and the highest values were found in those treatments in most of the cases. Significantly (P<0.05%) the highest content of oil (51.1%) in seed was measured in the treatment 5.0 t RB ha-1 + N120P90K150 kg ha-1 and protein (33.9%) was found in the treatment 5.0 t RB ha-1 +N80P60K100 kg ha-1. Their lowest values were found in control for oil and in 2.5 t RB ha-1 for protein, which was lower than control treatment. The overall findings of this study indicated that rice bran in combination with chemical fertilizers could be applied to achieve better concentration and uptake in different organs, oil and protein content in seeds of sunflower. Int. J. Agril. Res. Innov. Tech. 10(2): 91-99, December 2020


2015 ◽  
Vol 8 (4) ◽  
pp. 3293-3357 ◽  
Author(s):  
R. A. Fisher ◽  
S. Muszala ◽  
M. Verteinstein ◽  
P. Lawrence ◽  
C. Xu ◽  
...  

Abstract. We describe an implementation of the Ecosystem Demography (ED) concept in the Community Land Model. The structure of CLM(ED) and the physiological and structural modifications applied to the CLM are presented. A major motivation of this development is to allow the prediction of biome boundaries directly from plant physiological traits via their competitive interactions. Here we investigate the performance of the model for an example biome boundary in Eastern North America. We explore the sensitivity of the predicted biome boundaries and ecosystem properties to the variation of leaf properties determined by the parameter space defined by the GLOPNET global leaf trait database. Further, we investigate the impact of four sequential alterations to the structural assumptions in the model governing the relative carbon economy of deciduous and evergreen plants. The default assumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms of carbon assimilation and expenditure, can reproduce the geographical structure of biome boundaries and ecosystem functioning. We find some support for this assumption, but only under particular combinations of model traits and structural assumptions. Many questions remain regarding the preferred methods for deployment of plant trait information in land surface models. In some cases, plant traits might best be closely linked with each other, but we also find support for direct linkages to environmental conditions. We advocate for intensified study of the costs and benefits of plant life history strategies in different environments, and for the increased use of parametric and structural ensembles in the development and analysis of complex vegetation models.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10614
Author(s):  
Mohammed Hasan ◽  
Marlia M. Hanafiah ◽  
Intsar H.H. Alhilfy ◽  
Ziad Aeyad Taha

Background Laser applications in agriculture have recently gained much interest due to improved plant characteristics following laser treatment before the sowing of seeds. In this study, maize seeds were exposed to different levels of laser treatment prior to sowing to improve their field performance. The aim of this study is to evaluate the impact of pre-sowing laser photobiomodulation on the field emergence and growth of treated maize seeds. Methods The maize seeds were first photobiomodulated with two lasers: 1) a helium-neon (He–Ne) red laser (632.8 nm), and 2) a neodymium-doped yttrium aluminum garnet (Nd:YAG) green laser (532 nm). Following three replications of randomized complete block design (RCBD), four irradiation treatments were applied (45 s, 65 s, 85 s, and 105 s) at two power intensities (2 mW/cm2 and 4 mW/cm2). Results Based on the results, maize seeds pretreated with a green laser and 2 mW/cm2 power intensity for 105 s exhibited the highest rate of seed emergence (96%) compared to the untreated control seeds with a lower seed emergence rate (62.5%). Furthermore, maize seeds treated with a red laser for 45 s showed an increased vigor index compared to the other treatment options and the control (P < 0.01). The treatment groups also showed statistically significant differences in seedling growth characteristics compared to the control group p < 0.01. The green laser produced a significant enhancement of about 24.20 cm in seedling length, 8.2 leaves/plant, and 3.4 cm in stem diameter compared to the untreated seeds. Moreover, the green laser treatment showed 57.4 days to anthesis, which was earlier than the untreated seeds (61.4 days). The results showed that the protein, oil, and starch contents of the seeds irradiated with the green laser were 17.54%, 6.18%, and 73.32%, respectively, compared to the seeds irradiated by the red laser with 16.51%, 6.33%, and 71.05%, respectively. Conclusions The photo biomodulation of maize seeds using a green laser light can improve the field emergence, seedling growth, and seed quality of the treated seed compared to the red laser treatment.


2019 ◽  
Vol 20 (5) ◽  
Author(s):  
ENDRIK NURROHMAN ◽  
SITI ZUBAIDAH ◽  
HERU KUSWANTORO

Abstract. Nurrohman E, Zubaidah S, Kuswantoro H. 2019. Agronomical performance of soybean genotypes infected by Cowpea Mild Mottle Virus in various level of nitrogen. Biodiversitas 20: 1255-1263. Nitrogen is one of the essential nutrients during the process of vegetative and generative growth of soybean. Nitrogen deficiency during the growth can adverse to agronomical plant traits. This study was aimed to discover the influence of nitrogen on the agronomical traits of the soybean lines and varieties infected by cowpea mild mottle virus (CpMMV). The trial was arranged in factorial randomized complete block design with three replications. The first factor was the nitrogen dose consisting of four nitrogen doses while the soybean genotypes as the second factor consisted of seven genotypes. The results showed that nitrogen did not influence the plant resistance to CpMMV. The plant resistance was more affected by the genotype. The soybean genotypes were significant differences in the pod length, the pod width, and the flowering date. The interaction between genotype and nitrogen was found in the number of filled pods, the number of unfilled pods plant-1, the number of reproductive nodes plant-1, the number of total pods and the seed weight plant-1. The relationship in agronomic traits showed that significant positive correlations were found between number of filled pods with number of total pods, seed length with seed width and seed thickness, while the significant negative correlations were found between pod thickness with number of unfilled pods and maturity date with weight of 50 seeds.


2015 ◽  
Vol 8 (11) ◽  
pp. 3593-3619 ◽  
Author(s):  
R. A. Fisher ◽  
S. Muszala ◽  
M. Verteinstein ◽  
P. Lawrence ◽  
C. Xu ◽  
...  

Abstract. We describe an implementation of the Ecosystem Demography (ED) concept in the Community Land Model. The structure of CLM(ED) and the physiological and structural modifications applied to the CLM are presented. A major motivation of this development is to allow the prediction of biome boundaries directly from plant physiological traits via their competitive interactions. Here we investigate the performance of the model for an example biome boundary in eastern North America. We explore the sensitivity of the predicted biome boundaries and ecosystem properties to the variation of leaf properties using the parameter space defined by the GLOPNET global leaf trait database. Furthermore, we investigate the impact of four sequential alterations to the structural assumptions in the model governing the relative carbon economy of deciduous and evergreen plants. The default assumption is that the costs and benefits of deciduous vs. evergreen leaf strategies, in terms of carbon assimilation and expenditure, can reproduce the geographical structure of biome boundaries and ecosystem functioning. We find some support for this assumption, but only under particular combinations of model traits and structural assumptions. Many questions remain regarding the preferred methods for deployment of plant trait information in land surface models. In some cases, plant traits might best be closely linked to each other, but we also find support for direct linkages to environmental conditions. We advocate intensified study of the costs and benefits of plant life history strategies in different environments and the increased use of parametric and structural ensembles in the development and analysis of complex vegetation models.


2018 ◽  
Vol 10 (10) ◽  
pp. 518 ◽  
Author(s):  
Márcia Gabriel ◽  
Dionei Schmidt Muraro ◽  
Genesio Mario da Rosa ◽  
Arci Dirceu Wastowski ◽  
Stela Maris Kulczynski ◽  
...  

The objective of this study was to evaluate the effect of a foliar fungicide commonly used to control Asian soybean rust (Phakopsora pachyrhizi) in the physiological and sanitary quality of soybean seeds. The experiment was carried out during the 2012/13 field season, with six treatments and four replications arranged in a randomized complete block design. The following treatments were evaluated: T1 (no fungicide application); one application at R1 stage; two applications at R1 and R3 stages; three applications at R1, R3, and R5 stages; four applications at R1, R3, R5, and R6 stages and five applications at R1, R3, R5, R6 and R7 stages. Seeds yield, seed weight, viability and vigor assessments were used to measure the impact of foliar fungicide applications on soybean yield and seed quality. The results indicated that four fungicide applications provide higher grain yield, increased seed weight, and germination percentages within commercial standards. In contrast, the number of fungicide applications did not correlate with the sanitary quality of the seeds.


Sign in / Sign up

Export Citation Format

Share Document