scholarly journals Generation of a Metal Ion Beam Using a Vacuum Magnetron Discharge

Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 222-229
Author(s):  
Alexey V. Vizir ◽  
Efim M. Oks ◽  
Maxim V. Shandrikov ◽  
Georgy Yu. Yushkov

We have designed, fabricated and characterized an ion source based on a vacuum magnetron discharge. The magnetron discharge is initiated by a vacuum arc discharge, the plasma of which flows onto the magnetron sputtering target working surface. The vacuum arc material is usually the same as that of the magnetron target. The discharges operate at a residual pressure of 3 × 10−6 Torr without working gas feed. Pulses of vacuum arc (30 μs) and magnetron discharge (up to 300 μs) are applied simultaneously. After ignition by the vacuum arc, the magnetron discharge runs in a self-sustained mode. Cu–Cu, Ag–Ag, Zn–Zn, and Pb–Pb pairs of magnetron target material and vacuum arc cathode material were tested, as well as mixed pairs; for example, Cu vacuum arc cathode and Pb magnetron target. An ion beam was extracted from the discharge plasma by applying an accelerating voltage of up to 20 kV between the plasma expander and grounded electrodes. The ion beam collector current reached 80 mA. The ion beam composition, analyzed by a time-of-flight spectrometer, shows that the beam consists mainly of singly-charged (about 90%) and doubly-charged (about 10% current fraction) magnetron target material ions. The ion beam radial current density non-uniformity was as low as ±5% over a diameter of 6.6 cm, which is the diameter of the source output aperture.

2021 ◽  
Vol 2064 (1) ◽  
pp. 012054
Author(s):  
V V Poplavsky ◽  
A V Dorozhko ◽  
V G Matys

Abstract This paper presents a brief overview of our studies on the modification of materials using ion beam assisted deposition (IBAD) of metals from vacuum arc discharge plasma in order to form catalytically active and corrosion-resistant layers on the surface. Deposition of metals on different materials with simultaneous mixing of the deposited layer with the substrate surface by accelerated ions of the deposited metal was carried out in an experimental setup with a pulsed electric arc ion source. Catalytic and corrosion properties of the materials with the obtained layers were studied using electrochemical voltammetric measurements. The microstructure and composition of the resulting layers were studied using the SEM, EDX, WD-XRF, XPS, EBSD, and RBS methods.


1989 ◽  
Vol 147 ◽  
Author(s):  
I. G. Brown ◽  
M. D. Rubin ◽  
K. M. Yu ◽  
R. Mutikainen ◽  
N. W. Cheung

AbstractWe have used high-dose metal ion implantation to ‘fine tune’ the composition of Y-Ba- Cu-O thin films. The films were prepared by either of two rf sputtering systems. One system uses three modified Varian S-guns capable of sputtering various metal powder targets; the other uses reactive rf magnetron sputtering from a single mixed-oxide stoichiometric solid target. Film thickness was typically in the range 2000–5000 A. Substrates of magnesium oxide, zirconia-buffered silicon, and strontium titanate have been used. Ion implantation was carried out using a metal vapor vacuum arc (MEVVA) high current metal ion source. Beam energy was 100–200 keV, average beam current about 1 mA, and dose up to about 1017 ions/cm2. Samples were annealed at 800 – 900°C in wet oxygen. Film composition was determined using Rutherford Backscattering Spectrometry (RBS), and the resistivity versus temperature curves were obtained using a four-point probe method. We find that the zero-resistance temperature can be greatly increased after implantation and reannealing, and that the ion beam modification technique described here provides a powerful means for optimizing the thin film superconducting properties.


1995 ◽  
Vol 396 ◽  
Author(s):  
I.G. Brown ◽  
A. Anders ◽  
S. Anders ◽  
M.R. Dickinson ◽  
R.A. MacGill ◽  
...  

AbstractIon implantation by intense beams of metal ions can be accomplished using the dense metal plasma formed in a vacuum arc discharge embodied either in a vacuum arc ion source or in a ‘metal plasma immersion’ configuration. In the former case high energy metal ion beams are formed and implantation is done in a more-or-less conventional way, and in the latter case the substrate is immersed in the plasma and repetitively pulse-biased so as to accelerate the ions at the high voltage plasma sheath formed at the substrate. A number of advances have been made in the last few years, both in plasma technology and in the surface modification procedures, that enhance the effectiveness and versatility of the methods, including for example: controlled increase of the ion charge states produced; operation in a dual metal-gaseous ion species mode; very large area beam formation; macroparticle filtering; and the development of processing regimes for optimizing adhesion, morphology and structure. These complementary ion processing techniques provide the plasma tools for doing ion surface modification over a very wide parameter regime, from ‘pure’ ion implantation at energies approaching the MeV level, through ion mixing at energies in the ∼1 to ∼100 keV range, to IBAD-like processing at energies from a few tens of eV to a few keV. Here we review the methods, describe a number of recent developments, and outline some of the surface modification applications to which the methods have been put.


2014 ◽  
Vol 880 ◽  
pp. 288-291
Author(s):  
Igor Stepanov ◽  
Alexander Ryabchikov ◽  
Denis Sivin

The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc driven vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 Gs on the cathode surface.


Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


Author(s):  
С.Г. Давыдов ◽  
А.Н. Долгов ◽  
А.В. Корнеев ◽  
Р.Х. Якубов

AbstractThe process of electron instability development and propagation of a cathode electron beam and anomalous ion beam, followed by outburst of current in the initial stage of arc discharge was observed in rarefied plasma cloud of high-voltage vacuum diode. These events are consistent with the model of anomalous ion acceleration in interelectrode plasma at the spark stage of vacuum arc discharge.


1993 ◽  
Vol 316 ◽  
Author(s):  
M. A. Otooni ◽  
A. Graf ◽  
C. Dunham ◽  
Ian Brown ◽  
Xiang Yao

ABSTRACTCopper and aluminum used for rail and armature materials in electromagnetic railgun systems undergo severe degradation during the EM gun operation. The extent of this degradation is especially severe in guns operated at high energy levels or designed for repeated firings. In an effort to improve surface properties of the copper rail, armature, and sabot materials, the technique of metal ion implantation using a vacuum arc ion source has been employed. Preliminary tests have been conducted to identify the best implant species to improve spark erosion resistance, scratch resistance and hardness. The implanted species included Al, Ti, Cr, Ni, Ta, Ag, and W. The implantation energy range and dose varied between 100–180 KeV and 0.4 to 2 × 1017 cm-2, respectively . Several analytical techniques were also used to assess the effect of implanted species. These included Rutherford Back Scattering (RBS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Microhardness Measurements, Spark Erosion and Scratch Testing. It has been tentatively concluded that Ta and Ni implantation of the copper rail substantially improve wear and inhibit arc erosion. There is also sufficient evidence to indicate that implantation of the aluminum armature with Cr and Ta, involving two stages of implantation, will also improve its mechanical and wear properties.


1992 ◽  
Vol 295 ◽  
Author(s):  
Mikio Takai ◽  
Ryou Mimura ◽  
Hiroshi Sawaragi ◽  
Ryuso Aihara

AbstractA nondestructive three-dimensional RBS/channeling analysis system with an atomic resolution has been designed and is being constructed in Osaka University for analysis of nanostructured surfaces and interfaces. An ultra high-vacuum sample-chamber with a threeaxis goniometer and a toroidal electrostatic analyzer for medium energy ion scattering (MEIS) was combined with a short acceleration column for a focused ion beam. A liquid metal ion source (LMIS) for light metal ions such as Li+ or Be+ was mounted on the short column.A minimum beam spot-size of about 10 nm with a current of 10 pA is estimated by optical property calculation for 200 keV Li+ LMIS. An energy resolution of 4 × 10-3 (AE/E) for the toroidal analyzer gives rise to atomic resolution in RBS spectra for Si and GaAs. This system seems feasible for atomic level analysis of localized crystalline/disorder structures and surfaces.


1985 ◽  
Vol 45 ◽  
Author(s):  
David R Kingham ◽  
Vincent J Mifsud

ABSTRACTA theoretical model of liquid metal ion source (LMIS) operation has been developed by Kingham and Swanson. In this paper we consider beams from LMIS on the basis of this model. In particular we consider properties such as angular intensity, energy spread and relative abundance of differently charged species of the ion beam, and the dependence of these properties on source current and elemental composition. The conclusion is that the brightest focussed beam for a given probe size is attainable at the lowest possible source current as previously stated by Swanson. LMIS sources have an onset current of typically 1-2[A and will not operate stably below this current, thus limiting the maximum focussed ion beam brightness. The physical reason for this is discussed. The relevance of these properties to fine focussed ion beam applications, particularly semiconductor processing, is discussed. Useful, and in some cases unique, device manufacturing techniques can be postulated using one or more of the momentum, energy or atomic addition properties inherant tothis type of system. Advanced research tools are discussed, together with some examples of the use of microfocussed ion beams with probe sizes down to less than 50nm. Immediate applications include: high resolution ion imaging and SIMS microanalysis; ion beam machining and microfabrication; ion beam resist exposure and ion beam mask repair.


Sign in / Sign up

Export Citation Format

Share Document