scholarly journals Antioxidant Activity and Antifungal Activity of Chitosan Derivatives with Propane Sulfonate Groups

Polymers ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 395 ◽  
Author(s):  
Fang Luan ◽  
Lijie Wei ◽  
Jingjing Zhang ◽  
Yingqi Mi ◽  
Fang Dong ◽  
...  
2019 ◽  
Vol 15 (4) ◽  
pp. 341-351 ◽  
Author(s):  
Ana P. Bettencourt ◽  
Marián Castro ◽  
João P. Silva ◽  
Francisco Fernandes ◽  
Olga P. Coutinho ◽  
...  

Background: Previous publications show that the addition of a phenolic antioxidant to an antifungal agent, considerably enhances the antifungal activity. Objective: Synthesis of novel compounds combining phenolic units with linear or cyclic nitrogencontaining organic molecules with antioxidant/antifungal activity using methodologies previously developed in the group. Methods: Several N- [1,2-dicyano-2- (arylidenamino) vinyl]-O-alkylformamidoximes 3 were synthesized and cyclized to 4,5-dicyano-N- (N´-alcoxyformimidoyl)-2-arylimidazoles 4 upon reflux in DMF, in the presence of manganese dioxide or to 6-cyano-8-arylpurines 5 when the reagent was refluxed in acetonitrile with an excess of triethylamine. These compounds were tested for their antioxidant activity by cyclic voltammetry, DPPH radical (DPPH•) assay and deoxyribose degradation assay. The minimum inhibitory concentration (MIC) of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans, and against bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram negative). Their cytotoxicity was evaluated in fibroblasts. Results: Among the synthetised compounds, five presented higher antioxidant activity than reference antioxidant Trolox and from these compounds, four presented antifungal activity without toxic effects in fibroblasts and bacteria. Conclusion: Four novel compounds presented dual antioxidant/antifungal activity at concentrations that are not toxic to bacteria and fibroblasts. The active molecules can be used as an inspiration for further studies in this area.


10.5219/1695 ◽  
2021 ◽  
Vol 15 ◽  
pp. 1112-1119
Author(s):  
Hana Ďúranová ◽  
Veronika Valková ◽  
Lucia Galovičová ◽  
Jana Štefániková ◽  
Miroslava Kačániová

Fungal food spoilage plays a key role in the deterioration of food products, and finding a suitable natural preservative can solve this problem. Therefore, antifungal activity of green mandarin (Citrus reticulata) essential oil (GMEO) in the vapor phase against the growth of Penicillium (P.) expansum and P. chrysogenum inoculated on wheat bread (in situ experiment) was investigated in the current research. The volatile compounds of the GMEO were analyzed by a gas chromatograph coupled to a mass spectrometer (GC–MS), and its antioxidant activity was determined by testing free radical-scavenging capacity (DPPH assay). Moreover, the disc diffusion method was used to analyze the antifungal activity of GMEO in in vitro conditions. The results demonstrate that the Citrus reticulata EO consisted of α-limonene as the most abundant component (71.5%), followed by γ-terpinene (13.9%), and β-pinene (3.5%), and it displayed the weak antioxidant activity with the value of inhibition 5.6 ±0.7%, which corresponds to 103.0 ±6.4 µg TEAC.mL-1. The findings from the GMEO antifungal activity determination revealed that values for the inhibition zone with disc diffusion method ranged from 0.00 ±0.00 (no antifungal effectiveness) to 5.67 ±0.58 mm (moderate antifungal activity). Finally, exposure of Penicillium strains growing on bread to GMEO in vapor phase led to the finding that 250 μL.L-1 of GMEO exhibited the lowest value for mycelial growth inhibition (MGI) of P. expansum (-51.37 ±3.01%) whose negative value reflects even supportive effect of the EO on the microscopic fungus growth. On the other hand, GMEO at this concentration (250 μL.L-1) resulted in the strongest inhibitory action (MGI: 54.15 ±1.15%) against growth of P. chrysogenum. Based on the findings it can be concluded that GMEO in the vapor phase is not an effective antifungal agent against the growth of P. expansum inoculated on bread; however, its antifungal potential manifested against P. chrysogenum suggests GMEO to be an appropriate alternative to the use of chemical inhibitors for bread preservation.


2018 ◽  
Vol 8 (6) ◽  
pp. 22-27
Author(s):  
TR Prashith Kekuda ◽  
Nitish A. Bharadwaj ◽  
MB Sachin ◽  
BK Sahana ◽  
GS Priyanka

Objectives: Argyreia cuneata (Willd.) Ker Gawl. belongs to the family Convolvulaceae. The present study was performed to screen the potential of crude extract of various parts of A. cuneata to exhibit antimicrobial activity. Methods: Extraction of shade dried and powdered leaf, stem and flower of A. cuneata was carried out by maceration technique. Antibacterial and antifungal activity of extracts was evaluated by Agar well diffusion and Poisoned food technique respectively. Antioxidant activity was determined by DPPH radical scavenging, ABTS radical scavenging and ferric reducing assays. Results:  All extracts were effective in inhibiting test bacteria and the susceptibility of bacteria to extracts was in the order: Bacillus cereus > Shigella flexneri > Escherichia coli > Salmonella typhimurium. Leaf extract and stem extract exhibited highest and least antibacterial activity, respectively. Extracts were effective in causing inhibition of seed-borne fungi viz. Aspergillus niger and Bipolaris sp to >50%. Leaf extract exhibited marked antifungal activity followed by flower extract and stem extract. All extracts were shown to exhibit concentration dependent scavenging and reducing activity. Antioxidant activity of extracts observed was in the order: leaf extract > flower extract > stem extract.  Conclusion: Among various parts of A. cuneata, leaf extract exhibited marked antimicrobial and antioxidant activity. The plant can be employed as an effective antimicrobial and antioxidant agent in suitable form. Further studies may be undertaken to recover phytochemicals from the plant and to investigate the antimicrobial and antioxidant activity of isolated components. Keywords: Argyreia cuneata, Maceration, Antimicrobial, Agar well diffusion, Poisoned food technique, Antioxidant


Author(s):  
Pallavi Kamble ◽  
Sailesh Wadher

 Objective: The objective of the present study was to synthesize a series of 3-hydroxychromone derivatives and to evaluate its in vitro antioxidant and antimicrobial activities.Methods: 3-hydroxy chromones were synthesized using an algar flynn oyamada method which includes oxidative cyclization of 2-hydroxy chalcones in basic solution by hydrogen peroxide. 2-hydroxy chalcones were synthesized by Claisen-Schmidt condensation of substituted 2-hydroxy acetophenones with substituted aromatic aldehydes using polyethylene glycol-400 as a recyclable solvent. The synthesized compounds were evaluated for in vitro antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. In addition, these compounds were also screened for in vitro antibacterial and antifungal activity by agar cup method and Poison plate method, respectively.Results: The structures of the synthesized compounds were characterized by infrared, 1H nuclear magnetic resonance and mass spectroscopy. The antioxidant activity data revealed that all the synthesized derivatives exhibited good activity due to the presence of phenolic hydroxyl group, 4-oxo group and 2,3-double bond. Further, the activity increased with the introduction of a more phenolic hydroxyl group and adjacent methoxy group in the structure. The antimicrobial activity data showed that the compounds possess better antibacterial and antifungal activity which is attributed to the presence of phenolic hydroxyl group and 4-oxo group in the structure.Conclusions: The use of inexpensive, eco-friendly and readily available reagents, easy work-up and high purity of products makes the procedure a convenient and robust method for the synthesis of title compounds. The presence of phenolic hydroxyl group, 4-oxo group, and 2,3-double bond in the structure is responsible for their good antioxidant and antimicrobial activities.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Nihaya Salameh ◽  
Naser Shraim ◽  
Nidal Jaradat ◽  
Motasem El Masri ◽  
Lina Adwan ◽  
...  

Background. The investigation of volatile oils used in traditional medicine is vital to enhance the quality of healthcare. This study is aimed at screening the antioxidant and antimicrobial properties of Micromeria fruticosa serpyllifolia volatile oils from three different regions in Palestine (north, middle, and south). Methods. Volatile oils of three samples of M. fruticosa serpyllifolia were extracted using the microwave-ultrasonic apparatus. The antioxidant activity of the volatile oils was assessed by inhibition of DPPH free radical. The antimicrobial activity was examined using the broth microdilution method. Assessment of antifungal activity was achieved using the agar dilution method. Results. Screening the biological activity of plant extracts revealed that the sample from Ramallah (middle region) possessed the most potent antioxidant activity with an IC50 value of 0.45 μg/mL. The three samples exhibited broad antimicrobial activity and showed potential antifungal activity. The sample from the southern region showed the highest potency against Shigella sonnei with the lowest reported MIC; the sample from the northern region demonstrated the least potency against clinical isolate of Staphylococcus aureus and “methicillin”-resistant Staphylococcus aureus. Conclusions. The study showed that Micromeria fruticosa serpyllifolia volatile oil samples from different regions in Palestine possess different potential antioxidant and antimicrobial activities that were in line with traditional uses of the plant extracts.


2019 ◽  
Vol 10 (12) ◽  
pp. 1480-1488 ◽  
Author(s):  
Qing Li ◽  
Lijie Wei ◽  
Jingjing Zhang ◽  
Guodong Gu ◽  
Zhanyong Guo

A new class of chitosan derivatives possessing coumarins was synthesized to improve the antioxidant activity of chitosan.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5109
Author(s):  
Cynthia Torres-Alvarez ◽  
Sandra Castillo ◽  
Eduardo Sánchez-García ◽  
Carlos Aguilera González ◽  
Sergio Arturo Galindo-Rodríguez ◽  
...  

Concentrated orange oils (5x, 10x, 20x) are ingredients used in different industries as components of flavors and aromas due to their great organoleptic qualities. This research focuses on the search for alternative uses for their application through encapsulation in inclusion complexes with β-cyclodextrin (β–CD). Inclusion complexes of concentrated orange oils (COEO) and β–CD were developed by the co-precipitated method in ratios of 4:96, 12:88, and 16:84 (w/w, COEO: β–CD). The best powder recovery was in the ratio 16:84 for the three oils, with values between 82% and 84.8%. The 20x oil in relation 12:88 showed the highest entrapment efficiency (89.5%) with 102.3 mg/g of β–CD. The FT-IR analysis may suggest an interaction between the oil and the β–CD. The best antioxidant activity was observed in the ratio 12:88 for the three oils. The antifungal activity was determined for all the inclusion complexes, and the 10x fraction showed the highest inhibition at a concentration of 10 mg/mL in ratios 12:88 and 16:84. Antibacterial activity was determined by the minimum inhibitory concentration (MIC) and was found at a concentration of 1.25 mg/mL in ratios 12:88 and 16:84 for 5x and 20x oils.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2460
Author(s):  
Yingqi Mi ◽  
Wenqiang Tan ◽  
Jingjing Zhang ◽  
Zhanyong Guo

A novel and green method for the preparation of chitosan derivatives bearing organic acids was reported in this paper. In order to improve the antioxidant activity of chitosan, eight different hydroxypropyltrimethyl ammonium chitosan derivatives were successfully designed and synthesized via introducing of organic acids onto chitosan by mild and non-toxic ion exchange. The data of Fourier Transform Infrared (FTIR), 13C Nuclear Magnetic Resonance (NMR), 1H NMR, and elemental analysis for chitosan derivatives indicated the successful conjugation of organic acid salt with hydroxypropyltrimethyl ammonium chloride chitosan (HACC). Meanwhile, the antioxidant activity of the chitosan derivatives was evaluated in vitro. The results indicated that the chitosan derivatives possessed dramatic enhancements in DPPH-radical scavenging activity, superoxide-radical scavenging activity, hydroxyl radical scavenging ability, and reducing power. Furthermore, the cytotoxicity of the synthesized compounds was investigated in vitro on L929 cells and showed low cytotoxicity. Thus, the enhanced antioxidant property of all novel chitosan products might be a great advantage, while applied in a wide range of applications in the form of antioxidant in biomedical, food, and cosmetic industry.


IUBMB Life ◽  
1998 ◽  
Vol 44 (5) ◽  
pp. 939-948 ◽  
Author(s):  
Seiichi Matsugo ◽  
Minako Mizuie ◽  
Michiko Matsugo ◽  
Rie Ohwa ◽  
Hiromi Kitano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document