scholarly journals Integrating Nano-Cu2O@ZrP into In Situ Polymerized Polyethylene Terephthalate (PET) Fibers with Enhanced Mechanical Properties and Antibacterial Activities

Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 113 ◽  
Author(s):  
Jialiang Zhou ◽  
Xiang Fei ◽  
Congqi Li ◽  
Senlong Yu ◽  
Zexu Hu ◽  
...  

The approach of in situ polymerization modification has proven to be an effective route for introducing functions for polyester materials. In this work, Cu2O@ZrP nanosheets with excellent dispersity and high antibacterial activity were integrated into in situ polymerized polyethylene terephthalate (PET) fibers, revealing an enhanced mechanical performance in comparison with the PET fibers fabricated directly via a traditional melt blending method. Additionally, such an in situ polymerized PET/Cu2O@ZrP fibers displayed highly enhanced mechanical properties; and great antibacterial activities against multi-types of bacterium, including S. aureus, E. coli and C. albicans. For the as-obtained two types of PET/Cu2O@ZrP fibers, we have detailed their molecular weight (detailed molecular weight) and dispersibility of nano-Cu2O@ZrP and fibers crystallinity was investigated by Gel chromatography (GPC), Scanning electron microscope (SEM), and X-ray diffractometer (XRD), respectively. The results showed that the aggregation of the nano-Cu2O@ZrP in the resultant PET matrix could be effectively prevented during its in situ polymerization process, hence we attribute its highly enhanced mechanical properties to its superior dispersion of nano-Cu2O@ZrP.

2006 ◽  
Vol 510-511 ◽  
pp. 758-761 ◽  
Author(s):  
Hyeong Ho Jin ◽  
Sang Ho Min ◽  
Kyu Hong Hwang ◽  
Ik Min Park ◽  
Hong Chae Park ◽  
...  

Biodegradable β-tricalcium phosphate (β-TCP)/poly (lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The influence of the β-TCP content in β-TCP/PLGA composites on the molecular weight, crystallinity, microstructure, and mechanical properties was investigated. As the molecular weight of composites decreased, the β-TCP content increased up to 10 wt%, while further raising of the β-TCP content above 10%, the molecular weight increased with increasing β-TCP content. This behavior may be ascribed to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young’s modulus of the β-TCP/PLGA composites were proportional to the molecular weight of PLGA. The bending strength of the β-TCP/PLGA composites ranged from 18 to 38 MPa, while Young’s modulus was in the range from 2 to 6 GPa.


RSC Advances ◽  
2016 ◽  
Vol 6 (51) ◽  
pp. 45014-45022 ◽  
Author(s):  
Chunhua Wang ◽  
Feng Hu ◽  
Kejian Yang ◽  
Tianhui Hu ◽  
Wenzhi Wang ◽  
...  

Nylon 6/sulfonated graphene composites with high thermal conductivity, good mechanical properties and excellent processability were prepared using sulfonated graphene as a precursor by an in situ polymerization process.


2009 ◽  
Vol 87-88 ◽  
pp. 228-232
Author(s):  
Li Yun Zheng ◽  
Zhi Min Liu ◽  
Ya Jun Zhao

To enhance the mechanical property and the bioactivity of composites, nano-hydroxyapatite (n-HA) modified monomer casting nylon-6 (n-HA/N) composites were prepared by in situ polymerization. During the synthesis of n-HA/N composite, the n-HA and caprolactam were mixed, melt and placed in the field of ultrasonic radiation. The differences between composite with ultrasonic and without ultrasonic were investigated. The tensile strength and the viscosity average molecular weight of the nylon matrix were measured. The results show that the molecular weight of the nylon matrix decreased firstly and it had the lowest value when the content of nano-hydroxyapatite was 1.6 wt.%. After that the molecular weight increased and then it began to decrease when it reached the highest value. But the tensile strength of the n-HA/N composite were improved. The ultrasonic dispersion made the n-HA more evenly dispersed in the nylon and increased the mechanical properties of the n-HA/N composites significantly. The bioactivity and moisture absorption of n-HA/N composites in simulated body fluid (SBF) were examined and compared to pure nylon. What's more, Fourier transform infrared spectrometer was used to characterize the structure of the materials formed on the surface of the composite. The results showed that moisture absorption of the n-HA/N composites was lower than that of the pure nylon. After composites impregnated 16 days in SBF, a layer of carbon hydroxyapatite (CHA) with weak crystalline was formed on the surface of sample. This phenomenon showed that the n-HA/N composites have good bioactivity.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2012 ◽  
Vol 557-559 ◽  
pp. 519-522
Author(s):  
Xu Man Wang ◽  
Cai Ning Zhang

Silane coupling agent KH-570 was applied to modify the surface capability of the alumina (Al2O3). The modified Al2O3were dispersed in styrene. The in-situ polymerization was used to prepare the polystyrene/alumina (PS/Al2O3) composites, in which azodiisobutyronitrile (AIBN) was used as initiator. FTIR, DSC and TG were applied to characterize the prepared composites. The solvent resistance, thermal resistance of the composites and the average molecular weight of PS in PS/Al2O3nanocomposites were studied. The experimental results demonstrated that the solvent resistance of PS/Al2O3nanocomposites was improved by the adding of Al2O3nanoparticles. The thermal resistance of the composites increased with the increasing of the Al2O3content. Meanwhile, the molecular weight of PS in the composites increased with the increasing of the Al2O3content.


2018 ◽  
Vol 33 (2) ◽  
pp. 180-197 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

Pristine mesoporous diatomite was employed to prepare polystyrene/diatomite composites. Diatomite platelets were used for in situ polymerization of styrene by atom transfer radical polymerization to synthesize tailor-made polystyrene nanocomposites. X-Ray fluorescence spectrometer analysis and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite platelets. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Linear increase of ln ( M0/M) with time for all the samples shows that polymerization proceeds in a living manner. Addition of 3 wt% pristine mesoporous diatomite leads to an increase of conversion from 72% to 89%. Molecular weight of polystyrene chains increases from 11,326 g mol−1 to 14134 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.13 to 1.38. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 81.9°C to 87.1°C by adding 3 wt% of mesoporous diatomite platelets.


2013 ◽  
Vol 750-752 ◽  
pp. 7-10
Author(s):  
Kou An Hao ◽  
Zhen Qing Wang ◽  
Li Min Zhou

Fiber impregnation has been the main obstacle for thermoplastic matrix with high viscosity. This problem could be surmounted by adapting low viscous polymeric precursors Woven basalt fabric reinforced poly (butylenes terephthalate) composites were produced via in-situ polymerization at T=210°C. Before polymerization, catalyst was introduced to the reinforcement surface with different concentration. DSC is used to determine the polymerization and crystallization. SEM is used to detect whether the catalyst existed on surface. Both flexural and short-beam shear test are employed to study the corresponding mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document