scholarly journals A Multi-Parameter Perturbation Solution and Experimental Verification for Bending Problem of Piezoelectric Cantilever Beams

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1934 ◽  
Author(s):  
Zhi-Xin Yang ◽  
Xiao-Ting He ◽  
Hong-Xia Jing ◽  
Jun-Yi Sun

The existing studies indicate that the application of piezoelectric polymers is becoming more and more extensive, especially in the analysis and design of sensors or actuators, but the problems of piezoelectric structure are usually difficult to solve analytically due to the force–electric coupling characteristics. In this study, the bending problem of a piezoelectric cantilever beam was investigated via theoretical and experimental methods. First, the governing equations of the problem were established and non-dimensionalized. Three piezoelectric parameters were selected as perturbation parameters and the perturbation solution of the equations was finally obtained using a multi-parameter perturbation method. In addition, the relevant experiments of the piezoelectric cantilever beam were carried out, and the experimental results were in good agreement with the theoretical solutions. Based on the experimental results, the effect of piezoelectric properties on the bending deformation of piezoelectric cantilever beams was analyzed and discussed. The results indicated that the multi-parameter perturbation solution obtained in this study is effective and it may serve as a theoretical reference for the design of sensors or actuators made of piezoelectric polymers.

2019 ◽  
Vol 10 (1) ◽  
pp. 215
Author(s):  
Zhi-Xin Yang ◽  
Xiao-Ting He ◽  
Dan-Dan Peng ◽  
Jun-Yi Sun

As an intelligent material, piezoelectric materials have been widely used in many intelligent fields, especially in the analysis and design of sensors and actuators; however, the vibration problems of the corresponding structures made of the piezoelectric materials are often difficult to solve analytically, because of their force–electric coupling characteristics. In this paper, the biparametric perturbation method was used to solve the free damping vibration problem of piezoelectric cantilever beams, and the perturbation solution of the problem solved here was given. A numerical example was given to discuss the influence of the piezoelectric properties on the vibration of piezoelectric cantilever beams. In addition, related vibration experiments of the piezoelectric cantilever beams were carried out, and the experimental results were in good agreement with the theoretical results. The results indicated that the biparametric perturbation solution obtained in this study is effective, and it may serve as a theoretical reference for the design of sensors and actuators made of piezoelectric materials.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1222 ◽  
Author(s):  
Yongsheng Lian ◽  
Xiaoting He ◽  
Sijie Shi ◽  
Xue Li ◽  
Zhixin Yang ◽  
...  

In this study, we use a multi-parameter perturbation method to solve the problem of a functionally graded piezoelectric cantilever beam under combined loads, in which three piezoelectric coefficients are selected as the perturbation parameters. First, we derive the two basic equations concerning the Airy stress function and electric potential function. By expanding the unknown Airy stress function and electric potential function with respect to three perturbation parameters, the two basic equations were decoupled, thus obtaining the corresponding multi-parameter perturbation solution under boundary conditions. From the solution obtained, we can see clearly how the piezoelectric effects influence the behavior of the functionally graded piezoelectric cantilever beam. Based on a numerical example, the variations of the elastic stresses and displacements as well as the electric displacements of the cantilever beam under different gradient exponents were shown. The results indicate that if the pure functionally graded cantilever beam without a piezoelectric effect is regarded as an unperturbed system, the functionally graded piezoelectric cantilever beam can be looked upon as a perturbed system, thus opening the possibilities for perturbation solving. Besides, the proposed multi-parameter perturbation method provides a new idea for solving similar nonlinear differential equations.


2013 ◽  
Vol 655-657 ◽  
pp. 823-829 ◽  
Author(s):  
Zhi Lin Ruan ◽  
Jun Jie Gong ◽  
Meng Chang Cai ◽  
Bing Huang

In order to solve the inconsistent problem of multi-layer connection and vibration in each layer, a butterfly piezoelectric generator with multilayer cantilever beams is designed. The generator is mainly constituted by butterfly multilayer cantilever beams and mass subassembly two parts. Physical devices of butterfly generator and typical piezoelectric cantilever are fabricated respectively. The experimental setup is also put up for the testing of resonant frequency and output voltage. It can be found that each layer of multilayer generator has a similar output voltage and resonant frequency to the typical one with same geometric and material parameters. So each layer in butterfly piezoelectric generator can be simplified as a typical cantilever beam for researching and analyzing.


2005 ◽  
Vol 888 ◽  
Author(s):  
Dongna Shen ◽  
Jyoti Ajitsaria ◽  
Song-Yul Choe ◽  
Dong-Joo Kim

ABSTRACTWith the rapid development of wireless remote sensor systems, battery is becoming the limiting factor in the lifetime of the device and miniaturization. As a way to eliminate battery in the system, the conversion of ambient vibration energy has been addressed. The piezoelectric cantilever beam with a proof mass was exploited for energy conversion since it can generate large strain and power density. The design of cantilever beams was optimized through numerical analysis and FEM simulation at higher acceleration condition. The investigated parameters influencing the output energy of piezoelectric bimorph cantilevers include dimensions of cantilever beam and proof mass. The resonant frequency and robustness of cantilever structure were also considered for enhancing power conversion efficiency and implementing devices at high acceleration condition. The power density generated by the optimized piezoelectric device was high enough (> 1200 μW/cm3) to operate microsensor systems. However, high stress near clamping area of cantilever beam could lead to the fracture at high acceleration condition.


Author(s):  
Bei Lu ◽  
Qifu Li

Cantilever beams are widely found in many different applications such as aircraft wings and microelectromechanical devices. One of the problems associated with cantilever structures is that uncontrolled tip vibrations can cause serious structural damage. This paper presents one possible solution to control the oscillation of a cantilever beam. The solution involves the use of strain gauges to measure the oscillation and piezoelectric actuators to control the tip deflection. The piezoelectric cantilever beam is modeled as a second-order system with one degree-of-freedom. The system parameters, including the natural frequency, the damping ratio, and the zeros, are identified from measurement of free and sinusoidal responses. An observer-based controller is then designed using the identified dynamics model. Simulation and experimental results demonstrate the accuracy of the model and the performance of the controller.


2015 ◽  
Vol 775 ◽  
pp. 363-367 ◽  
Author(s):  
Yin Bo Li ◽  
Ming Hui Yao ◽  
Wei Zhang

This article focuses on the complicated dynamics behavior of the nonlinear vibrations of the bistable cantilevered piezoelectric beam. The base excitation on the beam is the harmonic load. We studied the jump phenomenon of the system by sweeping the voltage and displacement, the experimental results show that the bistable piezoelectric cantilever beam reflects the obvious hard spring characteristics. In addition, the influence of the distance between the magnets and the thickness of the piezoelectric layer on the dynamic behavior also being studied. Experimental results show that the distance between the magnets is closely impact on the nonlinear dynamic responses of the system, there is an optimal distance between the magnets causes the most complex dynamic behavior in frequency domain. System appears period doubling bifurcation into chaos many times when the distance between magnets is appropriate.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1728 ◽  
Author(s):  
Xiao-Ting ◽  
Zhi-Xin ◽  
Hong-Xia ◽  
Jun-Yi

The existing studies indicate polymers will present obviously different properties in tension and compression (bimodular effect) which is generally ignored because of the complexity of the analysis. In this study, a functionally graded piezoelectric cantilever beam with bimodular effect was investigated via analytical and numerical methods, respectively, in which a one-dimensional theoretical solution was derived by neglecting some unimportant factors and a two-dimensional numerical simulation was performed based on the model of tension-compression subarea. A full comparison was made to show the rationality of one-dimensional theoretical solution and two-dimensional numerical simulation. The result indicates that the layered model of tension-compression subarea also makes it possible to use numerical technique to simulate the problem of functionally graded piezoelectric cantilever beam with bimodular effect. Besides, the modulus of elasticity E* and the bending stiffness D* proposed in the one-dimensional problem may succinctly describe the piezoelectric effect on the classical mechanical problem without electromechanical coupling, which shows the advantages of one-dimensional solution in engineering applications, especially in the analysis and design of energy harvesting/sensing/actuating devices made of piezoelectric polymers whose bimodular effect is relatively obvious.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Hou ◽  
Linbing Wang ◽  
Dawei Wang ◽  
Hailu Yang ◽  
Meng Guo ◽  
...  

Green and sustainable power supply for sensors in pavement monitoring system has attracted attentions of civil engineers recently. In this paper, the piezoelectric energy harvesting technology is used to provide the power for the acceleration sensor and Radio Frequency (RF) communication. The developed piezoelectric bimorph cantilever beam is used for collecting the vibrational energy. The energy collection circuit is used to charge the battery, where the power can achieve 1.68 mW and can meet the power need of acceleration sensor for data collection and transmission in one operation cycle, that is, 32.8 seconds. Based on the piezoelectric-cantilever-beam powered sensor, the preliminary study on the IoT-based pavement monitoring platform is suggested, which provides a new applicable approach for civil infrastructure health monitoring.


Sign in / Sign up

Export Citation Format

Share Document