scholarly journals Effects of Nanoclay on Tensile and Flexural Properties of Pineapple Leaf Fibre Reinforced Phenolic Composite

Phenolic based PALF/nanoclay hybrid composites was prepared by adding Montmorillonite (MMT) as filler at different loading (1%, 2% and 3%) by using hot press technique. Obtained results indicated that adding MMT in PALF/phenolic composites considerably improves the tensile and flexural strength and modulus. Tensile properties showed that the tensile strength increased after adding MMT though tensile modulus decreased. Flexural strength and modulus were enhanced after adding MMT up to 2%, further addition of MMT declined the properties. 2% MMT showed better tensile and flexural properties. 3% MMT/PALF hybrid composite showed no further improvement in tensile properties after 2% MMT, however the flexural properties were reduced. 3% MMT did not improved much maybe agglomeration accrued. PALF/nanoclay/phenolic hybrid composites revealed good mechanical properties that encourage to use for structural purposes.


2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.



Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 18 ◽  
Author(s):  
Anna Kufel ◽  
Stanisław Kuciel

The aim of the research was to study the effects of adding natural fillers to a polypropylene (PP) matrix on mechanical and physical properties of hybrid composites. The 10%, 15%, and 20% by weight basalt fibers (BF) and ground hazelnut shells (HS) were added to the PP matrix. Composites were produced by making use of an injection molding method. Tensile strength, tensile modulus, strain at break, Charpy impact strength, and the coefficient of thermal expansion were determined. The influence of temperature, thermal aging, and water absorption on mechanical properties was also investigated. In addition, short-time creep tests were carried out. To characterize the morphology and the filler distribution within the matrix, a scanning electron microscope (SEM) was used. The results showed that the addition of the two types of filler enhanced mechanical properties. Furthermore, improvements in thermal stability were monitored. After water absorption, the changes in the tensile properties of the tested composites were moderate. However, thermal aging caused a decrease in tensile strength and tensile modulus.



2020 ◽  
Vol 12 (2) ◽  
pp. 244-248
Author(s):  
Yiwen Xu ◽  
Shengcai Qi ◽  
Yuanzhi Xu

The objective of this study is to enhance the thermal and mechanical properties of the photosensitive resin for RP (Rapid Prototyping) modifying with TiO2 nanoparticles NPs. The coupling agent KH570 was chosen for treating the surface of TiO2 NPs. The influence of the TiO2 content on the viscosity and the curing depth of photosensitive resin were analyzed in this study. We also tested the mechanical properties such as tensile modulus, tensile strength, hardness and flexural strength. Using differential scanning calorimetry, we tested the thermal stability of the modified photosensitive resin. Modified photosensitive resin's comprehensive performance was really good when the content of TiO2 was at 0.25%, the increase in tensile strength from 24.3 to 46.9 MPa was noticed to be 89%, the increase in tensile modulus from 1990 to 2251 MPa was noticed to be 18%, the increase in hardness and flexural strength was noticed to be 5 and 6%, respectively. Moreover, the heat stability and plasticity of the modified photosensitive resin are also enhanced. This paper gives a cost-efficient method of improving the functioning of photosensitive resin for RP.



2017 ◽  
Vol 13 (10) ◽  
pp. 6558-6562
Author(s):  
A. Athijayamani ◽  
A.Sujin Jose ◽  
K. Ramanathan ◽  
S. Sidhardhan

In this study, Wood Dust (WD)/Phenol Formaldehyde (PF) and Coir Pith (CP)/PF composites were hybridized with the Prosopis Juliflora Fiber (PJF) to obtain the hybrid composites. Composites were prepared by hand moulding technique. The weight percentage of particles and fibers are fixed in the ratio of 1:1. Mechanical properties such as tensile, flexural and impact strengths were evaluated as a function of the particle and fiber loadings. The results show that the properties of both the WD and CP composites obviously improved by the addition of the PJF. The improvement in WD/PF composites was obviously higher than the CP/PF composites for all loadings. The WD/PJF/PF hybrid composites exhibited better tensile (strength of 48.9 MPA and modulus of 1262.1 MPa, respectively), flexural (strength of 55.4 MPa and modulus of 1344.3 MPa, respectively), and impact properties (1.32 KJ/m2). 



2015 ◽  
Vol 4 (3) ◽  
pp. 1-5
Author(s):  
Silvia ◽  
Castiqliana ◽  
Halimatuddahliana

This study was aimed to investigate the effect of modified coconut wood flour and maleic anhydride-g-polypropylene addition in tensile strength and flexural strength of hybrid composite. Modification of coconut wood flour was also done to reduce the polarity. The hybrid composites were prepared by mixing method into an extruder. Glass Fiber Flour and maleic anhydride-g-polypropylene composition were made constant at 10 wt.% and 2 wt.% respectively and modified coconut wood flour composition was varied from 10 - 40 wt.%. Tensile test and flexural test were done. The results showed that addition of 20 wt.% modified coconut wood flour had given maximum tensile strength of 24,1 MPa and addition of 30 wt.% modified coconut wood flour had given maximum flexural strength of 31,2 MPa also inclination of both tensile and flexural strength of hybrid composite using maleic anhydride-g-polypropylene.



2021 ◽  
pp. 002199832110115
Author(s):  
Naseem Ahamad ◽  
Aas Mohammad ◽  
Moti Lal Rinawa ◽  
Kishor Kumar Sadasivuni ◽  
Pallav Gupta

The aim of the present paper is to examine the outcome of Al2O3-SiC reinforcements on structural and mechanical behavior of Al matrix based hybrid composites. Al-Al2O3-SiC hybrid composite has been developed through stir casting with addition of ceramics i.e. Al2O3-SiC (2.5 wt.%, 5.0 wt.%, 7.5 wt.% and 10.0 wt.%) in relative and symmetrical proportion. The structural characteristics, i.e. phase, microstructure, EDS; physical property i.e. density and the mechanical properties, i.e. hardness, impact strength and tensile strength of fabricated specimens have been investigated. XRD represents the transitional phase formation among Al base material and Al2O3-SiC ceramic phases with inter-atomic bonding between them. SEM reveals that the Al2O3-SiC fragments has distributed symmetrically in Al matrix. EDS spectrum of various samples are in confirmation with the XRD results. Density of hybrid composite reduces with increase in weight percentage of ceramic reinforcements i.e. Al2O3-SiC because ceramic particle gains low density after preheating. Hardness of hybrid composites increases upto 5 wt.% variation of ceramic reinforcements i.e. Al2O3-SiC after that it decreases. Impact strength of hybrid composite has been increased with an increase in weight percentage of ceramic. Al-2.5 wt.% Al2O3-2.5 wt.% SiC shows maximum ultimate tensile strength. It is expected that the prepared hybrid composites will be useful for fastener studs.



2014 ◽  
Vol 7 (1) ◽  
pp. 94-108
Author(s):  
Amer Hameed Majeed ◽  
Mohammed S. Hamza ◽  
Hayder Raheem Kareem

The study covers the effect of nanocarbon black particles (N220) on some important mechanical properties of epoxy reinforced with it [carbon black nanoparticles]. The nanocomposites were prepared with (1 to 10 wt. %) of carbon black nanoparticles using ultrasonic wave bath machine dispersion method. The results had shown that the tensile strength , tensile modulus of elasticity, flexural strength and impact strength are improved by (24.02%,7.93%,17.3% and 6% ) respectively at 2wt % .The compressive strength and hardness are improved by (44.4%, 12%) at 4wt%.



2019 ◽  
Vol 895 ◽  
pp. 176-180
Author(s):  
C.K. Yogish ◽  
S. Pradeep ◽  
B. Kuldeep ◽  
K.P. Ravikumar ◽  
Rao R. Raghavendra

Over the last decades composite materials, plastics and ceramics have been the dominant emerging materials. The volume and number of applications of composite materials have grown steadily, penetrating and conquering new markets relentlessly. So everybody is concentrating on new materials which will be strong enough, less weight, recyclable with reduced cost. Hence all the researchers are concentrated on the composite materials which have all the above properties. The present work is concentrated on coconut coir fiber and Rice husk reinforced polyester hybrid composites. The composites specimen was fabricated with various weight percentages of natural fibers namely coconut coir (20%, 15%, 10%, and 5%) and Rice husk (15%, 10%, and 5%) combined with CamElect 3321 resin using hand lay-up method. So to obtain new composite materials different proportions of coconut coir and Rice husk is added and the mechanical properties such as Tensile strength, Flexural Strength and Impact test were carried out for the samples cut from the fabricated composites specimen to the dimensions as per ASTM standard. With the increasing percentage of the reinforcements the performance of the material is improving. The tensile strength increases with the increase in coir reinforcement percentage and flexural strength increases with the increasing in percentage of the rice husk and the impact strength of the material gets boost with equal proportional percentage of coconut coir and rice husk reinforcement.



2016 ◽  
Vol 35 (23) ◽  
pp. 1712-1721 ◽  
Author(s):  
Changchun Wang ◽  
Guanghui Bai ◽  
Guangquan Yue ◽  
Hongfu Li ◽  
Boming Zhang

A hot-press tackifying process was used to improve the mechanical properties of cured laminates in vacuum-assisted resin transfer molding by placing a thermoplastic film into the preforms at various pressures and temperatures. Three modified preforms were prepared at 0.1, 0.3, and 0.6 MPa using an autoclave, and the laminates were then produced via vacuum-assisted resin transfer molding. The mechanical properties of the modified laminates were tested and compared to those of the unmodified ones. The fiber volume fractions of the modified laminates decreased with increasing pressure. The tensile strength of the modified laminates at the three pressures improved by 16.78%, 41.21%, and 29.47%, respectively, compared to the unmodified samples. Modified laminates at 0.3 MPa showed better results than those at 0.1 and 0.6 MPa, which were all better than the unmodified samples. The modulus of the modified laminates from vacuum-assisted resin transfer molding was improved by 2.48%, 19.01%, and 13.22%, respectively. The effect of the hot-press tackifying in improving the tensile strength and modulus of a laminate on a pre-impregnated laminate (prepreg) using the autoclave was studied and compared to that of the unmodified case. Here, the tensile strength increased by 32.5% and 12.3%, respectively.



2020 ◽  
Vol 01 (01) ◽  
pp. 06-10 ◽  
Author(s):  
Mahir Asif ◽  
Kazi Adnan Rahman ◽  
Mohammad Omar Faisal ◽  
Md. Shariful Islam

In this paper, mechanical properties of bamboo strip and bamboo strip-glass fiber reinforced hybrid composite were investigated. Composites were manufactured by using hand lay-up technique and bamboo strips were made from locally available bamboo. Four layers of bamboo strip composite were manufactured and in case of hybrid composite, two layers of glass fiber one at the top and the other at the bottom were used with the aim was to observe the effect of adding glass fiber layer on the mechanical properties of bamboo strip composite. Tensile and flexural properties were studied and it was found that adding the glass fiber layer doesn’t have any significant effect on tensile properties but flexural strength and modulus have increased by 22.49 % and 15.02 % respectively.



Sign in / Sign up

Export Citation Format

Share Document