scholarly journals Removal and Oxidation of As(III) from Water Using Iron Oxide Coated CTAB as Adsorbent

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1687 ◽  
Author(s):  
Daniela Predoi ◽  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Mikael Motelica-Heino

Iron oxides such as magnetite and maghemite coated with cetyltrimethylammonium bromide (CTAB) are very promising materials for wastewater treatment because iron oxide can be easily separated from solutions using the magnetic separation procedure Iron oxide (IO) coated CTAB was synthesized by an adapted co-precipitation method. In the present study, the IO-CTAB was used for removing arsenic from water for the first time. In the present study, the performance of iron oxide coated CTAB biocomposites as an adsorbent for arsenic removal from aqueous solutions was examined. X-ray diffraction (XRD) analysis and the results revealed a cubic phase Fd-3 m of Fe3O4 with lattice a = 8.40 Å and average crystal size equal to 17.26 ± 3 nm. The mean particle size calculated from transmission electron microscopy (TEM) was 19.86 ±1.7 nm. The results of the adsorption batch experiments and the data determined using the Langmuir and Freundlich models emphasized that IO-CTAB nanoparticles were favorable for the adsorption of As(III) ions from aqueous solutions. Ultrasound measurements have shown that IO-CTAB is a cost-effective biocomposite for removing arsenic from contaminated solutions. Moreover, x-ray photoelectron spectroscopy (XPS) has shown that during the process of arsenic absorption, there is oxidation from As(III) to As(V), which leads to a decrease in toxicity during this process. The results of the cytotoxic assays confirmed that the IO-CTAB nanoparticles did not induce any morphological changes in the HeLa cells and did not affect their proliferation after 24 h of incubation.

2011 ◽  
Vol 63 (5) ◽  
pp. 917-923 ◽  
Author(s):  
Jun Hu ◽  
Donglin Zhao ◽  
Xiangke Wang

Multiwalled carbon nanotubes (MWCNTs)/iron oxide magnetic composites (named as MCs) were prepared by co-precipitation method, and were characterised by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in detail. The prepared MCs were employed as an adsorbent for the removal of Pb(II) and Cu(II) ions from wastewater in heavy metal ion pollution cleanup. The results demonstrated that the sorption of Pb(II) and Cu(II) ions was strongly dependent on pH and temperature. The experimental data were well described by Langmuir model, and the monolayer sorption capacity of MCs was found to vary from 10.02 to 31.25 mg/g for Pb(II) and from 3.11 to 8.92 mg/g for Cu(II) at temperature increasing from 293.15 to 353.15 K at pH 5.50. The sorption capacity of Pb(II) on MCs was higher than that of Cu(II), which was attributed to their ionic radius, hydration energies and hydrolysis of their hydroxides. The thermodynamic parameters (i.e., ΔH0, ΔS0 and ΔG0) were calculated from temperature dependent sorption isotherms, and the results indicated that the sorption of Pb(II) and Cu(II) ions on MCs were spontaneous and endothermic processes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sasikala Sundar ◽  
V. Ganesh

Abstract Magnetic nanoparticles of iron oxide (γ-Fe2O3) have been prepared using bio-assisted method and their application in the field of biosensors is demonstrated. Particularly in this work, different nanostructures of γ-Fe2O3 namely nanospheres (NS), nanograsses (NG) and nanowires (NW) are prepared using a bio-surfactant namely Furostanol Saponin (FS) present in Fenugreek seeds extract through co-precipitation method by following “green” route. Three distinct morphologies of iron oxide nanostructures possessing the same crystal structure, magnetic properties, and varied size distribution are prepared and characterized. The resultant materials are analyzed using field emission scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Moreover, the effect of reaction time and concentration of FS on the resultant morphologies of γ-Fe2O3 nanostructures are systematically investigated. Among different shapes, NWs and NSs of γ-Fe2O3 are found to exhibit better sensing behaviour for both the individual and simultaneous electrochemical detection of most popular biomarkers namely dopamine (DA) and uric acid (UA). Electrochemical studies reveal that γ-Fe2O3 NWs showed better sensing characteristics than γ-Fe2O3 NSs and NGs in terms of distinguishable voltammetric signals for DA and UA with enhanced oxidation current values. Differential pulse voltammetric studies exhibit linear dependence on DA and UA concentrations in the range of 0.15–75 µM and 5 μM – 0.15 mM respectively. The detection limit values for DA and UA are determined to be 150 nM and 5 µM. In addition γ-Fe2O3 NWs modified electrode showed higher sensitivity, reduced overpotential along with good selectivity towards the determination of DA and UA even in the presence of other common interferents. Thus the proposed biosensor electrode is very easy to fabricate, eco-friendly, cheaper and possesses higher surface area suggesting the unique structural patterns of γ-Fe2O3 nanostructures to be a promising candidate for electrochemical bio-sensing and biomedical applications.


Author(s):  
Faris Jasim Abdulridha Al-Doghachi

Nickel, palladium, and platinum catalysts (1 wt.% each) supported on MgO and MgZrO to prepare Pt,Pd,Ni/Mg1-xZrxO catalysts (where x = 0, 0.03, 0.07, and 0.15), were synthesized by using co-precipitation method with K2CO3 as the precipitant. X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), H2-temperature programmed reduction (H2-TPR), and thermo gravimetric analysis (TGA) were employed to observe the characteristics of the prepared catalysts. The Pt,Pd,Ni/Mg0.85Zr0.15O showed the best activity in dry reforming of methane (DRM) with 99 % and 91 % for CO2 and CH4 conversions, respectively and 1.28 for H2/CO ratio at temperature 900 °C and 1:1 of CH4:CO2 ratio. The stability of Pt,Pd,Ni/Mg0.85Zr0.15O catalyst in the presence and absence of low stream 1.25 % oxygen was investigated. Carbon formation and amount in spent catalysts were examined by TEM and TGA in the presence of stream oxygen. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3 %) was observed. Several effects were observed with ZrO2 use as a promoter in the catalyst. Firstly, the magnesia cubic phase stabilized. Secondly, thermal stability and support for basicity increased. Thirdly, carbon deposition and the reducibility of Ni2+, Pd2+, and Pt2+ ions decreased. Copyright © 2018 BCREC Group. All rights reservedReceived: 25th October 2017; Revised: 2nd January 2018; Accepted: 18th January 2018; Available online: 11st June 2018; Published regularly: 1st August 2018How to Cite: Al-Doghachi, F.A.J. (2018). Effects of Platinum and Palladium Metals on Ni/Mg1-xZrxO Catalysts in the CO2 Reforming of Methane. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (2): 295-310 (doi:10.9767/bcrec.13.2.1656.295-310) 


2010 ◽  
Vol 24 (19) ◽  
pp. 2091-2099 ◽  
Author(s):  
JIANJUN ZHANG ◽  
JUNHONG DUAN

In this paper, the preparation and optical properties of sphere-like ZnS nanocrystals are reported. Pure and uniform cubic-phase sphere-like ZnS nanocrystals with grain sizes of 30–40 nm were synthesized by thermolysis of a new precursor complex ( enH 2)0.5[ Zn ( en )3]( SCN )3 (en = ethylenediamine) in nitrogen stream at 800°C. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), respectively. The XRD analysis reveals the phase of ZnS with cubic zinc blende. UV-Vis and photoluminescence spectra (PL) were utilized to investigate the optical properties of sphere-like ZnS nanocrystals. By testing on UV-Vis spectra, it is concluded that the limiting wavelength of the ZnS nanocrystals is 320 nm and the band gap is 3.88 eV. In room temperature PL spectra, one strong emission peak centered at 322 nm is discovered, which could be attributed to the band to band transitions. The above-mentioned results showed that the thermolysis method is preferable for synthesizing high-quality sphere-like ZnS nanocrystals. The synthesized precursor could be used as morphological templates to prepare nanostructure inorganic compounds.


2021 ◽  
Vol 4 (1) ◽  
pp. 26
Author(s):  
Sule Aytas ◽  
Sabriye Yusan ◽  
Senol Sert ◽  
Cem Gok

Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N2-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.


Biomimetics ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 39 ◽  
Author(s):  
Larisa Zemskova ◽  
Andrei Egorin ◽  
Eduard Tokar ◽  
Vladimir Ivanov ◽  
Svetlana Bratskaya

Here, we discuss the fabrication and problems of application of chitosan-based composite materials for the removal of hazardous metal ions from tap water and wastewater. The chitosan-based composites containing iron oxides for the uptake of Sr2+ ions were fabricated via a co-precipitation method with variation of the iron/chitosan ratio and pH of the medium. The morphology and composition of the fabricated sorbents were characterized using scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDX) and X-ray diffraction (XRD) analysis. We have shown that the suggested fabrication approach allows for a homogeneous distribution of the inorganic phase in the polymer matrix. Investigations of the sorption performance of the composites have shown that they are efficient sorbents for 90Sr radionuclides uptake from tap water. The composite sorbent containing amorphous iron oxide in a chitosan matrix and calcined at 105 °C showed the best sorption characteristics. We have also demonstrated that there is an optimal iron oxide content in the composite: with increasing oxide content, the efficiency of the sorbents decreases due to poor stability in solution, especially in alkaline media. The alternative approach yielding magnetic chitosan-based composites with sufficiently good sorption performance and stability in neutral and weakly alkaline media is suggested.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Sabriye Yusan

<p>Magnetic graphene oxide nanocomposites (M-GO) were successfully synthesized by partial reduction co-precipitation method and used for removal of Sr(II) and Cs(I) ions from aqueous solutions. The structures and properties of the M-GO was investigated by X-ray diffraction, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer (VSM) and N<sub>2</sub>-BET measurements. It is found that M-GO has 2.103 mg/g and 142.070 mg/g adsorption capacities for Sr(II) and Cs(I) ions, respectively. The adsorption isotherm matches well with the Freundlich for Sr(II) and Dubinin–Radushkevich model for Cs(I) and kinetic analysis suggests that the adsorption process is pseudo-second-ordered.</p>


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 473
Author(s):  
Prabu Kumar Seetharaman ◽  
Rajkuberan Chandrasekaran ◽  
Rajiv Periakaruppan ◽  
Sathishkumar Gnanasekar ◽  
Sivaramakrishnan Sivaperumal ◽  
...  

To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV–vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Margarita Gabrovska ◽  
Ivan Ivanov ◽  
Dimitrinka Nikolova ◽  
Jugoslav Krstić ◽  
Anna Maria Venezia ◽  
...  

Supported gold on co-precipitated nanosized NiAl layered double hydroxides (LDHs) was studied as an effective catalyst for medium-temperature water–gas shift (WGS) reaction, an industrial catalytic process traditionally applied for the reduction in the amount of CO in the synthesis gas and production of pure hydrogen. The motivation of the present study was to improve the performance of the Au/NiAl catalyst via modification by CeO2. An innovative approach for the direct deposition of ceria (1, 3 or 5 wt.%) on NiAl-LDH, based on the precipitation of Ce3+ ions with 1M NaOH, was developed. The proposed method allows us to obtain the CeO2 phase and to preserve the NiAl layered structure by avoiding the calcination treatment. The synthesis of Au-containing samples was performed through the deposition–precipitation method. The as-prepared and WGS-tested samples were characterized by X-ray powder diffraction, N2-physisorption and X-ray photoelectron spectroscopy in order to clarify the effects of Au and CeO2 loading on the structure, phase composition, textural and electronic properties and activity of the catalysts. The reduction behavior of the studied samples was evaluated by temperature-programmed reduction. The WGS performance of Au/NiAl catalysts was significantly affected by the addition of CeO2. A favorable role of ceria was revealed by comparison of CO conversion degree at 220 °C reached by 3 wt.% CeO2-modified and ceria-free Au/NiAl samples (98.8 and 83.4%, respectively). It can be stated that tuning the properties of Au/NiAl LDH via CeO2 addition offers catalysts with possibilities for practical application owing to innovative synthesis and improved WGS performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 805
Author(s):  
Saif Ullah Khan ◽  
Rumman Zaidi ◽  
Feroz Shaik ◽  
Izharul Haq Farooqi ◽  
Ameer Azam ◽  
...  

Nanotechnology has received much attention in treating contaminated waters. In the present study, a facile co-precipitation method was employed to synthesize a novel iron and magnesium based binary metal oxide using a stoichiometrically fixed amount of FeNO3.9H2O and MgNO3.6H2O in a proportion of molar concentration 1:1 and was later evaluated in removing As (III) from contaminated waters. Characterization of the prepared nanomaterial was done using X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX) and ultraviolet–visible spectrophotometry (UV-VIS). Experimental studies on batch scale were carried out, examining the effect of varying initial concentrations of metal, adsorbent dosage, application time and initial pH on removal efficiency. Arsenic removal increased on increasing adsorbent dosage (0.1–1 g/L) but trend reversed on increasing initial arsenic concentration attaining qmax of 263.20 mg/g. Adsorption was quite efficient in pH range 4–8. Freundlich fitted better for adsorption isotherm along with following Pseudo-2nd order kinetics. The reusability and effect of co-existing ions on arsenic adsorption, namely SO42−, CO32− and PO43− were also explored with reusability in 1st and 2nd cycles attained adsorptive removal up to 77% and 64% respectively. The prepared nano-adsorbent showed promising results in terms of high arsenic uptake (qmax of 263.20 mg/g) along with facile and cost-effective synthesis. Thus, the co-precipitation technique used in this work is a simple one step procedure without any use of any precursor as compared to most of the other procedures used for synthesis.


Sign in / Sign up

Export Citation Format

Share Document