scholarly journals Design of Polypropylene Electret Melt Blown Nonwovens with Superior Filtration Efficiency Stability through Thermally Stimulated Charging

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2341
Author(s):  
Haifeng Zhang ◽  
Nuo Liu ◽  
Qianru Zeng ◽  
Jinxin Liu ◽  
Xing Zhang ◽  
...  

Electret filters are widely used in particulate matter filtration due to their filtration efficiency that can be greatly improved by electrostatic forces without sacrificing the air resistance. However, the attenuation of the filtration efficiency remains a challenge. In this study, we report a novel strategy for producing an electret melt blown filter with superior filtration efficiency stability through a thermally stimulated charging method. The proposed approach optimizes the crystal structure and therefore results in the increased production probability of the charge traps. In addition, the re-trapping phenomenon caused by the thermal stimulation during the charging process can greatly increase the proportion of deep charge to shallow charge and improve the charge stability. A superior electret melt blown filtration material with a high filtration efficiency of 99.65%, low pressure drop of 120 Pa, and satisfactory filtration efficiency stability was produced after three cyclic charging times. The excellent filtration performance indicated that the developed material is a good air filtration candidate component for personal protection applications.

Author(s):  
Maorui Hu ◽  
Yifei Wang ◽  
Zhifeng Yan ◽  
Guodong Zhao ◽  
Yixia Zhao ◽  
...  

Air pollution and public health incidents have become a serious global concern. Hierarchical nanofibrous membranes are taken as high-performance filters with advanced structure, but the reliable fabrication is still challenging....


2019 ◽  
Vol 68 (1) ◽  
pp. 111-129
Author(s):  
Tadeusz Dziubak ◽  
Yurii Yendzheiovskyi

Nanofiber properties, methods of their production, and areas of their application have been presented. Parameters describing filtration materials with nanofibers addition were presented, and analyzed. Methodology for testing aerodynamic characteristics as well as characteristics of: efficiency, accuracy, and filter cartridges resistance with nanofibers addition, depending on the dust mass loading km were developed. Characteristic filtration parameters of the materials with nanofibers addition are presented. Five filtration inserts, differing in the filtration material with nanofibers addition, and without this layer were made. Test conditions were developed as well as a test stand was prepared. Aerodynamic characteristics tests of filter cartridges as well as filtration efficiency, accuracy, and flow resistance of standard (cellulose) cartridge, and the ones with nanofibers addition were performed. The positive effect of nanofiber layer on efficiency, and accuracy increase in the inlet engine air filtration was confirmed. Granulometric composition of air dust was assessed on a standard filter cartridge, and on a cartridge with nanofibers addition. Keywords: engine, air filter, nanofibers, filtration efficiency and accuracy, flow resistance, dust mass loading, grain size.


2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
S. Sakthivel ◽  
Anban J.J. Ezhil ◽  
T. Ramachandran

This paper reports an investigative study on the fabrication and measurement of the air permeability, mechanical properties, pore size distribution, and filtration efficiency of different nonwoven fabrics produced from reclaimed fibers by analytically changing the machine variables to manipulate the physical parameters of the nonwoven fabrics. Reclaimed fiber of cotton (60%) and polyester (40%) blend was used, so that the prospect of value addition to an inexpensive source of raw material could be explored. The changes in air permeability were interpreted in terms of fabric density profile and pore size distribution. The filtration parameters of filtration efficiency, dust holding capacity, and pressure drop were also calculated. Additionally, the effects of calendering on pore size and filtration properties were evaluated to discover the opportunity of fine-tuning and the performance of the filters. The outcome in this study reflected an overall development in all filtration characteristics due to the calendering operation.


2016 ◽  
Vol 47 (8) ◽  
pp. 2253-2280 ◽  
Author(s):  
Vinod V Kadam ◽  
Lijing Wang ◽  
Rajiv Padhye

This review presents an overview of electrospun nanomembranes produced from various polymers to filter air pollutants. Air pollutants can be categorised as particulate matter and gaseous pollutants. Both differ from each other in terms of size and chemical composition. Hence, the filter characterisation techniques and capture mechanism also vary. Particulate matter can be effectively captured in nanomembranes, in relation to microfibres, due to its small fibre diameter, small pore size and high specific surface area. Recently, electrospun nanomembranes have been used to filter gaseous pollutants owing to their potential of active surface modification. Different additives which functionalised the nanofibre surface for gaseous pollutant adsorption are also highlighted in this review. The characteristic features of nanofibres influencing the filtration efficiency have been discussed. Furthermore, various research challenges and future trends of electrospun nanomembranes in air filtration have been discussed.


RSC Advances ◽  
2016 ◽  
Vol 6 (69) ◽  
pp. 65275-65281 ◽  
Author(s):  
Qian Li ◽  
Yiyang Xu ◽  
Hanghang Wei ◽  
Xiaofeng Wang

The filtration efficiency of electrospun PC membrane was higher than those of both PVA and PS membranes, suggesting that polarity is the most influential factor shaping the interaction of particles and fiber surfaces.


Author(s):  
Le Kang ◽  
Yuankun Liu ◽  
Liping Wang ◽  
Xiaoping Gao

Abstract The filtration layer in a medical protective mask can effectively prevent aerosol particles that might carry viruses from air. A nanofiber/microfiber composite membrane (NMCM) was successfully fabricated by electrospinning polyvinylidene fluoride (PVDF) nanofibers collected on the electrified and melt-blown polypropylene (PP) nonwovens, aiming to improve the filtration efficiency and reduce the resistance of respiration of mask. A four-factor and three-level orthogonal experiment was designed to study the effect of electrospinning parameters such as spinning solution concentration, voltage, tip-collect distance (TCD), and flow rate of solution on the filtration efficiency, resistance of respiration as well as quality factor of NMC developed to predict the resistance of respiration. Experimental results demonstrated that the filtration efficiency of NMCM≥95% in comparison to that of electrified and melt-blown PP nonwovens 79.38%, which increases by 19.68%. Additionally, the average resistance of respiration is 94.78 Pa, which meets the protection requirements. Multivariate analysis of variance indicated that the resistance of respiration of the NMCM has significantly dependent on the concentration, voltage, TCD, and flow rate of the spinning solution and the quality factor of the NMCM has dependent on the resistance of respiration. The air permeability ranges from 166.23 to 314.35mm/s, which is inversely proportional to the filtration resistance. As far as the filtration resistance is concerned, the optimal spinning parameters were obtained as follows. The concentration of spinning solution is 15%, the voltage is 27 kV, the TCD is 22 cm, and the flow rate is 2.5 mL/h. The relative error of the BP neural network varies from 0.49505% to 1.49217%, i.e. the error value varies from 0.17 to1.33 Pa. The predicted resistance of respiration corresponding to the optimal process is 68.1374 Pa.


Sign in / Sign up

Export Citation Format

Share Document