scholarly journals Combination of Self-Healing Butyl Rubber and Natural Rubber Composites for Improving the Stability

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Kunakorn Chumnum ◽  
Ekwipoo Kalkornsurapranee ◽  
Jobish Johns ◽  
Karnda Sengloyluan ◽  
Yeampon Nakaramontri

The self-healing composites were prepared from the combination of bromobutyl rubber (BIIR) and natural rubber (NR) blends filled with carbon nanotubes (CNT) and carbon black (CB). To reach the optimized self-healing propagation, the BIIR was modified with ionic liquid (IL) and butylimidazole (IM), and blended with NR using the ratios of 70:30 and 80:20 BIIR:NR. Physical and chemical modifications were confirmed from the mixing torque and attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR). It was found that the BIIR/NR-CNTCB with IL and IM effectively improved the cure properties with enhanced tensile properties relative to pure BIIR/NR blends. For the healed composites, BIIR/NR-CNTCB-IM exhibited superior mechanical and electrical properties due to the existing ionic linkages in rubber matrix. For the abrasion resistances, puncture stress and electrical recyclability were examined to know the possibility of inner liner applications and Taber abrasion with dynamic mechanical properties were elucidated for tire tread applications. Based on the obtained Tg and Tan δ values, the composites are proposed for tire applications in the future with a simplified preparation procedure.

2018 ◽  
Vol 157 ◽  
pp. 07009 ◽  
Author(s):  
Mariana Pajtášová ◽  
Zuzana Mičicová ◽  
Darina Ondrušová ◽  
Slavomíra Božeková ◽  
Róbert Janík ◽  
...  

The presented paper deals with the use of waste materials as ecological fillers into rubber matrix. Waste materials were used as partial replacement of the commercial filler – carbon black, designated as N339. These prepared rubber compounds were characterized on the basis of the rheology and vulcanization characteristics – minimum torque (ML), maximum torque (MH), optimum time of vulcanization (t(c90)), processing safety of compound (ts), rate coefficient of vulcanization (Rv). In the case of the prepared vulcanizates, physical-mechanical properties (tensile strength, tensibility and hardness) and dynamic-mechanical properties (storage modulus, loss modulus, loss angle tan δ) were investigated. Using the dependency of loss angle on temperature, the selected properties for tyre tread vulcanizates were evaluated, including traction on snow and ice, traction on the wet surface and rolling resistance.


2020 ◽  
pp. 000-000 ◽  
Author(s):  
Mohammad Irfan Fathurrohman ◽  
Supagorn Rugmai ◽  
Nabil Hayeemasae ◽  
Kannika Sahakaro

ABSTRACT Reinforcement of silica in tire tread compounds is known to reduce hysteresis or energy loss, which leads to a production of energy-saving tires. Even though silica–silane technology has been well established, further development to enhance its performance is still needed. One of the approaches is to use hybrid or dual filler. The use of silica-organomodified montmorillonite (MMT) dual filler in the reinforcement of natural rubber (NR) truck tire tread compounds is investigated. The NR-MMT master batches were prepared by using the in situ organomodified and latex compounding method. Because the surface-modifying agent or surfactant is a key factor in determining the level of MMT dispersion in the rubber matrix, the effect of quaternary amine salt (Q) contents on mechanical and dynamic properties of NR tread compounds reinforced by silica-MMT was studied. The results revealed that MMT and Q can effectively reduce the filler–filler interaction and complex viscosity owing to a good dispersion of MMT and silica in the NR matrix and Q, which acts as a dispersing agent in addition to the silane coupling agent used in the compound, leading to improvement in tensile, abrasion resistance, and dynamic mechanical properties with an increasing amount of Q. Furthermore, at the optimum content of the surfactant used (36 wt%), the silica-MMT–reinforced NR exhibited improved tensile strength (+4%), wet grip, and rolling resistance, respectively, as indicated by loss tangent at 0 °C (+6%) and 60 °C (−15%), while maintaining a modulus at 300% strain and abrasion resistance as compared with the silica-NR reference compound. Such a dual-filler system demonstrates its potential use for tire treads with better performance.


2014 ◽  
Vol 925 ◽  
pp. 308-312 ◽  
Author(s):  
Mou'ad A. Tarawneh ◽  
Sahrim Haji Ahmad ◽  
Yu Li Jiun ◽  
Radwan Dweiri ◽  
Ibrahim N. Hassan

In this paper the polymer nanocomposite of nickel zinc (NiZn) ferrite nanoparticles incorporated into the thermoplastic natural rubber nanocomposite (TPNR) were prepared via melt blending method. The effect of different NiZn loading (2-10 wt%) on morphology, tensile and dynamic mechanical properties of the obtained composites was investigated. It was found that NiZn ferrite is well dispersed in the thermoplastic natural rubber matrix. The tensile results indicated that filler loading has improved the tensile strength and Youngs modulus of the nanocomposite. However, the elongation at break decreased with increasing the percentage of NiZn. Dynamic mechanical test showed that the highest storage modulus is at 8 wt% filler. Any further increment of the filler content leads to the formation of agglomerate hence affecting the properties. The Scanning electron micrograph (SEM) micrographs reveal aspect ratio and filler orientation in the TPNR matrix also strongly promoted interfacial adhesion between the filler and the matrix to control its properties.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2668
Author(s):  
Yao Yu ◽  
Junyi Zhang ◽  
Hongzhen Wang ◽  
Zhenxiang Xin

This article demonstrates the one-pot reaction, an efficient and environmentally friendly organic synthesis method, utilized to prepare the silanized silica-encapsulated calcium carbonate@natural rubber composites (SSC@NR), following first mixing the calcium carbonate (CaCO3) solution, silica (SiO2) sol solution and a small amount of Si-69 solution, to modify the surface of CaCO3 particles, and then wet mixing with natural rubber latex. The obtained silanized silica-encapsulated calcium carbonate (SSC) particles were tested by TGA, FTIR and XRD, to substantiate the effect of surface modification. Moreover, the effects of the amount of SSC on the Mooney viscosity, curing characteristics, physical and mechanical properties and dynamic mechanical properties of the SSC@NR were investigated. The results show that the surface of modified CaCO3 is effectively coated with SiO2 particles by means of physical and chemical combination, to achieve the effect of surface coating. When the optimum amount of SSC filler is 40 phr, the SSC can form better physical adsorption and chemical combination with the NR molecular chains and can be evenly dispersed in the rubber matrix, resulting in the conspicuous improvement of physical and mechanical properties, such as the tensile strength, tear strength, elongation at break and abrasion resistance. Meanwhile, the compound with SSC has preferable processability and dynamic mechanical properties.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1616
Author(s):  
Marcin Masłowski ◽  
Andrii Aleksieiev ◽  
Justyna Miedzianowska ◽  
Krzysztof Strzelec

Common nettle (Urtíca Dióica L.), as a natural fibrous filler, may be part of the global trend of producing biocomposites with the addition of substances of plant origin. The aim of the work was to investigate and explain the effectiveness of common nettle as a source of active functional compounds for the modification of elastomer composites based on natural rubber. The conducted studies constitute a scientific novelty in the field of polymer technology, as there is no research on the physico-chemical characteristics of nettle bio-components and vulcanizates filled with them. Separation and mechanical modification of seeds, leaves, branches and roots of dried nettle were carried out. Characterization of the ground plant particles was performed using goniometric measurements (contact angle), Fourier transmission infrared spectroscopy (FTIR), themogravimetric analysis (TGA) and scanning electron microscopy (SEM). The obtained natural rubber composites with different bio-filler content were also tested in terms of rheological, static and dynamic mechanical properties, cross-linking density, color change and resistance to simulated aging processes. Composites with the addition of a filler obtained from nettle roots and stems showed the highest mechanical strength. For the sample containing leaves and branches, an increase in resistance to simulated ultraviolet and thermo-oxidative aging processes was observed. This phenomenon can be attributed to the activity of ingredients with high antioxidant potential contained in the plant.


2010 ◽  
pp. NA-NA ◽  
Author(s):  
Shaji Joseph ◽  
Sreekumar P. Appukuttan ◽  
Jose M. Kenny ◽  
Debora Puglia ◽  
Sabu Thomas ◽  
...  

2011 ◽  
Vol 471-472 ◽  
pp. 622-627 ◽  
Author(s):  
H. Nabil ◽  
Hanafi Ismail ◽  
A.R. Azura

In this article, halloysite nanotubes (HNTs) and precipitated silica were replaced by recycled polyethylene terephthalate powder (R-PET) in natural rubber composites. Five different compositions of NR/HNTs/R-PET and NR/Silica/R-PET composites [i.e. 100/20/0, 100/15/5, 100/10/10, 100/5/15, and 100/0/20 parts per hundred rubber (phr)] were prepared on a two-roll-mill. Comparison of the curing behavior, tensile properties, and morphological characteristics of natural rubber composites was studied. The results indicated that the replacement of HNTs and silica by R-PET decreased the tensile strength, tensile modulus, and elongation at break of composites, but NR/Silica/R-PET composites showed the lower trend than that NR/HNTs/R-PET did. The negative effect of these properties could be explained by the decrement of crosslink density, R-PET is unable to be transferred the stress due to the weal rubber-fillers interactions, and the reducing of ductility of rubber matrix. The curing results revealed that, with replacement of HNTs and Silica by R-PET, the scorch time (ts2) and cure time (tc90) were decreased. Scanning electron microscopy investigation of tensile fracture surfaces confirmed that co-incorporation of NR/HNTs/R-PET would improve the dispersion of R-PET and enhanced the interactions between fillers and NR matrix rather than NR/Silica/R-PET composites.


2016 ◽  
Vol 89 (2) ◽  
pp. 272-291 ◽  
Author(s):  
Yeampon Nakaramontri ◽  
Charoen Nakason ◽  
Claudia Kummerlöwe ◽  
Norbert Vennemann

ABSTRACT Carbon nanotube (CNT)-filled natural rubber (NR) composites were prepared by melt and by latex mixing methods. Also in situ functionalization of CNTs with a silane coupling agent, namely bis(triethoxysilylpropyl)tetrasulfide (TESPT), was done to improve the filler–rubber interactions between CNT surfaces and rubber molecules. The grafting of TESPT molecules on CNT surfaces was confirmed by attenuated total reflection (ATR)–Fourier transform infrared (FTIR) spectroscopy and by the improvement of composite properties. Tensile properties were determined to assess the reinforcement efficiency of the CNTs in the composites. Also, electrical conductivity of the composites was measured to assess the formation of CNT networks (or connected conductive CNT pathways) in the rubber matrix. The results indicate that the composites prepared by latex mixing, in particular with the TESPT, had better tensile properties and electrical conductivities than the composites made by melt mixing. The lowest percolation threshold concentration, about 0.55 phr of CNTs, was observed in the latex–CNT composites, and three-dimensional network formations of CNTs in the rubber matrix were found with added TESPT, used by in situ functionalization. The improvement of filler–rubber interactions with the addition of TESPT was also examined by temperature scanning stress relaxation measurements, revealing the relaxation modulus, the relaxation spectrum, and an estimate of the cross-link density.


Sign in / Sign up

Export Citation Format

Share Document