scholarly journals Self-Healing Polymer Nanocomposite Materials by Joule Effect

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 649
Author(s):  
Jaime Orellana ◽  
Ignacio Moreno-Villoslada ◽  
Ranjita K. Bose ◽  
Francesco Picchioni ◽  
Mario E. Flores ◽  
...  

Nowadays, the self-healing approach in materials science mainly relies on functionalized polymers used as matrices in nanocomposites. Through different physicochemical pathways and stimuli, these materials can undergo self-repairing mechanisms that represent a great advantage to prolonging materials service-life, thus avoiding early disposal. Particularly, the use of the Joule effect as an external stimulus for self-healing in conductive nanocomposites is under-reported in the literature. However, it is of particular importance because it incorporates nanofillers with tunable features thus producing multifunctional materials. The aim of this review is the comprehensive analysis of conductive polymer nanocomposites presenting reversible dynamic bonds and their energetical activation to perform self-healing through the Joule effect.

Polymer ◽  
2015 ◽  
Vol 69 ◽  
pp. 369-383 ◽  
Author(s):  
Vijay Kumar Thakur ◽  
Michael R. Kessler

2019 ◽  
Vol 9 (4) ◽  
pp. 4315-4321 ◽  
Author(s):  
M. Danikas ◽  
D. Verginadis ◽  
R. Sarathi

A new class of insulating materials is the class of polymer nanocomposites. In the past twenty-five years, a lot of attention was paid to the various electrical, thermal and mechanical properties of polymer nanocomposite materials. In the present work, epoxy resin samples without and with nanoparticles (0 wt%, 1 wt%, 3 wt%, 5 wt%, and 10 wt%) are investigated regarding the surface discharges and the flashover voltages. Four different water droplet arrangements were used, with eight different water conductivities in order to see the effect of the nanoparticle.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3036
Author(s):  
Sergi Gallego ◽  
Yasuo Tomita

Polymer nanocomposites are designed and engineered on a nanometer scale with versatile applications including optics and photonics [...]


Nanoscale ◽  
2021 ◽  
Author(s):  
Harishankar Balakrishnan ◽  
Rubén Millán ◽  
Marti Checa ◽  
Rene Fabregas ◽  
Laura Fumagalli ◽  
...  

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy...


2008 ◽  
Vol 1143 ◽  
Author(s):  
Mickaël Castro ◽  
Jianbo Lu ◽  
Bijandra Kumar ◽  
Stéphane Bruzaud ◽  
Jean-François Feller

ABSTRACTNew unique abilities towards solvents' vapor of electrically Conductive Polymer nanoComposites (CPCs) have made it a subject, holding the attention of research groups. The direct conversion from chemical information into an electrical signal can take advantage of existing low power microelectronics and sensing technology such as detection of toxic vapor; environmental monitoring in chemical industry and quality control in food processing, beverage and perfume industry. Conductive Polymer nanoComposite (CPC) is a heterogeneous system consisting of insulated polymer matrices and conductive nanofillers. In this paper we have investigated a new route for CNT grafting via ring opening polymerization of e-caprolactone. The influence of this treatment on chemo-electrical properties of the so-called CPC based sensor was investigated in this work.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Jawad Sarfraz ◽  
Tina Gulin-Sarfraz ◽  
Julie Nilsen-Nygaard ◽  
Marit Kvalvåg Pettersen

There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 139
Author(s):  
Oluranti Agboola ◽  
Ojo Sunday Isaac Fayomi ◽  
Ayoola Ayodeji ◽  
Augustine Omoniyi Ayeni ◽  
Edith E. Alagbe ◽  
...  

Globally, environmental challenges have been recognised as a matter of concern. Among these challenges are the reduced availability and quality of drinking water, and greenhouse gases that give rise to change in climate by entrapping heat, which result in respirational illness from smog and air pollution. Globally, the rate of demand for the use of freshwater has outgrown the rate of population increase; as the rapid growth in town and cities place a huge pressure on neighbouring water resources. Besides, the rapid growth in anthropogenic activities, such as the generation of energy and its conveyance, release carbon dioxide and other greenhouse gases, warming the planet. Polymer nanocomposite has played a significant role in finding solutions to current environmental problems. It has found interest due to its high potential for the reduction of gas emission, and elimination of pollutants, heavy metals, dyes, and oil in wastewater. The revolution of integrating developed novel nanomaterials such as nanoparticles, carbon nanotubes, nanofibers and activated carbon, in polymers, have instigated revitalizing and favourable inventive nanotechnologies for the treatment of wastewater and gas separation. This review discusses the effective employment of polymer nanocomposites for environmental utilizations. Polymer nanocomposite membranes for wastewater treatment and gas separation were reviewed together with their mechanisms. The use of polymer nanocomposites as an adsorbent for toxic metals ions removal and an adsorbent for dye removal were also discussed, together with the mechanism of the adsorption process. Patents in the utilization of innovative polymeric nanocomposite membranes for environmental utilizations were discussed.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


Sign in / Sign up

Export Citation Format

Share Document