scholarly journals A Design for Additive Manufacturing Strategy for Dimensional and Geometrical Quality Improvement of PolyJet-Manufactured Glossy Cylindrical Features

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1132
Author(s):  
Natalia Beltrán ◽  
Braulio J. Álvarez ◽  
David Blanco ◽  
Fernando Peña ◽  
Pedro Fernández

The dimensional and geometrical quality of additively manufactured parts must be increased to match industrial requirements before they can be incorporated to mass production. Such an objective has a great relevance in the case of features of linear size that are affected by dimensional or geometrical tolerances. This work proposes a design for additive manufacturing strategy that uses the re-parameterization of part design to minimize shape deviations from cylindrical geometries. An analysis of shape deviations in the frequency domain is used to define a re-parameterization strategy, imposing a bi-univocal correspondence between verification parameters and design parameters. Then, the significance of variations in the process and design factors upon part quality is analyzed using design of experiments to determine the appropriate extension for modelling form deviation. Finally, local deviations are mapped for design parameters, and a new part design including local compensations is obtained. This strategy has been evaluated upon glossy surfaces manufactured in a Vero™ material by polymer jetting. The results of the proposed example showed a relevant improvement in dimensional quality, as well as a reduction of geometrical deviations, outperforming the results obtained with a conventional scaling compensation.

2015 ◽  
Vol 21 (6) ◽  
pp. 662-670 ◽  
Author(s):  
Guido A. O. Adam ◽  
Detmar Zimmer

Purpose – The purpose of this paper is to present Design Rules for additive manufacturing and a method for their development. Design/methodology/approach – First, a process-independent method for the development of Design Rules was worked out. Therefore, geometrical standard elements and attributes that characterize the elements’ shapes have been defined. Next, the standard elements have been manufactured with different attribute values with Laser Sintering, Laser Melting and Fused Deposition Modeling, and their geometrical quality was examined. From the results, Design Rules for additive manufacturing were derived and summarized in a catalogue. Findings – Due to the process independent method, Design Rules were developed that apply for the different considered additive manufacturing technologies equally. These Design Rules are completely function-independent and easily transferable to individual part designs. Research limitations/implications – The developed Design Rules can only apply for the considered boundary conditions. To extend the Design Rules’ validity, their applicability should be proven for other boundary conditions. Practical implications – The developed Design Rules practically support the design of technical parts. Additionally they can be used for training and teaching in the field of “design for additive manufacturing”. Originality/value – The developed Design Rules constitute a first step toward general Design Rules for Additive Manufacturing. Thus, they might form a suitable basis for further scientific approaches, and the Design Rules can be used to set up teaching documentations for lessons and seminars.


2020 ◽  
Vol 1 ◽  
pp. 1145-1154
Author(s):  
S. Weber ◽  
J. Montero ◽  
M. Bleckmann ◽  
K. Paetzold

AbstractThe topic of support structure design in the Design for Additive Manufacturing (DfAM) field is not addressed with the same relevance as the topic of part design. Therefore, this contribution investigates parameters for both the manufacturing and support structure design for the Laser Powder Bed Fusion (L-PBF) process. Matrices for cause-effect-relations of manufacturing and design parameters on build properties as well as correlations of them are presented. Based on these, recommendations for actions for experimental procedures are derived following the Design of Experiments method.


2021 ◽  
Vol 1 ◽  
pp. 1657-1666
Author(s):  
Joaquin Montero ◽  
Sebastian Weber ◽  
Christoph Petroll ◽  
Stefan Brenner ◽  
Matthias Bleckmann ◽  
...  

AbstractCommercially available metal Laser Powder Bed Fusion (L-PBF) systems are steadily evolving. Thus, design limitations narrow and the diversity of achievable geometries widens. This progress leads researchers to create innovative benchmarks to understand the new system capabilities. Thereby, designers can update their knowledge base in design for additive manufacturing (DfAM). To date, there are plenty of geometrical benchmarks that seek to develop generic test artefacts. Still, they are often complex to measure, and the information they deliver may not be relevant to some designers. This article proposes a geometrical benchmarking approach for metal L-PBF systems based on the designer needs. Furthermore, Geometric Dimensioning and Tolerancing (GD&T) characteristics enhance the approach. A practical use-case is presented, consisting of developing, manufacturing, and measuring a meaningful and straightforward geometric test artefact. Moreover, optical measuring systems are used to create a tailored uncertainty map for benchmarking two different L-PBF systems.


2021 ◽  
Vol 1 ◽  
pp. 2571-2580
Author(s):  
Filip Valjak ◽  
Angelica Lindwall

AbstractThe advent of additive manufacturing (AM) in recent years have had a significant impact on the design process. Because of new manufacturing technology, a new area of research emerged – Design for Additive Manufacturing (DfAM) with newly developed design support methods and tools. This paper looks into the current status of the field regarding the conceptual design of AM products, with the focus on how literature sources treat design heuristics and design principles in the context of DfAM. To answer the research question, a systematic literature review was conducted. The results are analysed, compared and discussed on three main points: the definition of the design heuristics and the design principles, level of support they provide, as well as where and how they are used inside the design process. The paper highlights the similarities and differences between design heuristics and design principles in the context of DfAM.


2020 ◽  
Vol 11 (1) ◽  
pp. 238
Author(s):  
Yun-Fei Fu ◽  
Kazem Ghabraie ◽  
Bernard Rolfe ◽  
Yanan Wang ◽  
Louis N. S. Chiu

The smooth design of self-supporting topologies has attracted great attention in the design for additive manufacturing (DfAM) field as it cannot only enhance the manufacturability of optimized designs but can obtain light-weight designs that satisfy specific performance requirements. This paper integrates Langelaar’s AM filter into the Smooth-Edged Material Distribution for Optimizing Topology (SEMDOT) algorithm—a new element-based topology optimization method capable of forming smooth boundaries—to obtain print-ready designs without introducing post-processing methods for smoothing boundaries before fabrication and adding extra support structures during fabrication. The effects of different build orientations and critical overhang angles on self-supporting topologies are demonstrated by solving several compliance minimization (stiffness maximization) problems. In addition, a typical compliant mechanism design problem—the force inverter design—is solved to further demonstrate the effectiveness of the combination between SEMDOT and Langelaar’s AM filter.


2021 ◽  
pp. 1-30
Author(s):  
L. Bergonzi ◽  
A. Pirondi ◽  
F. Moroni ◽  
M. Frascio ◽  
M. Avalle

2021 ◽  
Vol 11 (6) ◽  
pp. 2572
Author(s):  
Stefano Rosso ◽  
Federico Uriati ◽  
Luca Grigolato ◽  
Roberto Meneghello ◽  
Gianmaria Concheri ◽  
...  

Additive Manufacturing (AM) brought a revolution in parts design and production. It enables the possibility to obtain objects with complex geometries and to exploit structural optimization algorithms. Nevertheless, AM is far from being a mature technology and advances are still needed from different perspectives. Among these, the literature highlights the need of improving the frameworks that describe the design process and taking full advantage of the possibilities offered by AM. This work aims to propose a workflow for AM guiding the designer during the embodiment design phase, from the engineering requirements to the production of the final part. The main aspects are the optimization of the dimensions and the topology of the parts, to take into consideration functional and manufacturing requirements, and to validate the geometric model by computer-aided engineering software. Moreover, a case study dealing with the redesign of a piston rod is presented, in which the proposed workflow is adopted. Results show the effectiveness of the workflow when applied to cases in which structural optimization could bring an advantage in the design of a part and the pros and cons of the choices made during the design phases were highlighted.


2021 ◽  
pp. 87-93
Author(s):  
Abhijith Ram C ◽  
D Ajith

Space travel has always been a crucial task. Exploration and experimenting on Planets in our solar system will help us understand the universe better and also, we could find the origin of life. Rovers play an important role in finding these answers. The problem we have at present is not only with technology to explore the universe but also the ability of our rockets to carry rovers to other rocks. Since a large amount of fuel is required for Space travel, we end with very little cargo that can be sent to explore. As additive manufacturing started to play a vital part in Mechanical Science, we are going to try to use that tool to build a Generative design that helps in parts consolidation, weight reduction, increase flexibility, design optimisation and cost consolidation. Since weight is an important aspect, we could reduce the present rover weight and add additional scientific tools to the rover to increase its scope of search and applications. This project focuses on features enrichment in Rovers by optimizing rover weight and design using Design for Additive Manufacturing concept.


Sign in / Sign up

Export Citation Format

Share Document