scholarly journals Development of Epirubicin-Loaded Biocompatible Polymer PLA–PEG–PLA Nanoparticles: Synthesis, Characterization, Stability, and In Vitro Anticancerous Assessment

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1212
Author(s):  
Salam Massadeh ◽  
Iman Almohammed ◽  
Eman Barhoush ◽  
Mustafa Omer ◽  
Nouf Aldhawi ◽  
...  

Epirubicin (EPI) is an anti-cancerous chemotherapeutic drug that is an effective epimer of doxorubicin with less cardiotoxicity. Although EPI has fewer side effects than its analog, doxorubicin, this study aims to develop EPI nanoparticles as an improved formula of the conventional treatment of EPI in its free form. Methods: In this study, EPI-loaded polymeric nanoparticles (EPI-NPs) were prepared by the double emulsion method using a biocompatible poly (lactide) poly (ethylene glycol) poly(lactide) (PLA–PEG–PLA) polymer. The physicochemical properties of the EPI-NPs were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), entrapment efficiency and stability studies. The effect of EPI-NPs on cancer cells was determined by high throughput imaging and flow cytometry. Results: The synthesis process resulted in monodisperse EPI-NPs with a size of 166.93 ± 1.40 nm and an elevated encapsulation efficiency (EE) of 88.3%. In addition, TEM images revealed the spherical uniformness of EPI-NPs with no aggregation, while the cellular studies presented the effect of EPI-NPs on MCF-7 cells’ viability; after 96 h of treatment, the MCF-7 cells presented considerable apoptotic activity. The stability study showed that the EPI-NPs remained stable at room temperature at physiological pH for over 30 days. Conclusion: EPI-NPs were successfully encapsulated within a highly stable biocompatible polymer with minimal loss of the drug. The used polymer has low cytotoxicity and EPI-NPs induced apoptosis in estrogen-positive cell line, making them a promising, safe treatment for cancer with less adverse side effects.

2020 ◽  
Vol 17 ◽  
Author(s):  
Akhlesh Kumar Jain ◽  
Hitesh Sahu ◽  
Keerti Mishra ◽  
Suresh Thareja

Aim: To design D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for site specific delivery. Background: Liver cancer is the third leading cause of death in world and fifth most often diagnosed cancer is the major global threat to public health. Treatment of liver cancer with conventional method bears several side effects, thus to undertake these side effects as a formulation challenge, it is necessary to develop novel target specific drug delivery system for the effective and better localization of drug into the proximity of target with restricting the movement of drug in normal tissues. Objective: To optimize and characterize the developed D-Mannose conjugated 5-Fluorouracil (5-FU) loaded Jackfruit seed starch nanoparticles (JFSSNPs) for effective treatment of liver cancer. Materials and methods: 5-FU loaded JFSSNPs were prepared and optimized formulation had higher encapsulation efficiency were conjugated with D-Mannose. These formulations were characterized for size, morphology, zeta potential, X-Ray Diffraction, and Differential Scanning Calorimetry. Potential of NPs were studied using in vitro cytotoxicity assay, in vivo kinetic studies and bio-distribution studies. Result and discussion: 5-Fluorouracil loaded NPs had particle size between 336 to 802nm with drug entrapment efficiency was between 64.2 to 82.3%. In XRD analysis, 5-FU peak was diminished in the diffractogram, which could be attributed to the successful incorporation of drug in amorphous form. DSC study suggests there was no physical interaction between 5- FU and Polymer. NPs showed sustained in vitro 5-FU release up to 2 hours. In vivo, mannose conjugated NPs prolonged the plasma level of 5-FU and assist selective accumulation of 5-FU in the liver (vs other organs spleen, kidney, lungs and heart) compared to unconjugated one and plain drug. Conclusion: In vivo, bio-distribution and plasma profile studies resulted in significantly higher concentration of 5- Fluorouracil liver suggesting that these carriers are efficient, viable, and targeted carrier of 5-FU treatment of liver cancer.


2018 ◽  
Vol 10 (2) ◽  
pp. 52 ◽  
Author(s):  
Akshay Singha Roy ◽  
Sudipta Das ◽  
Arnab Samanta

Objective: The objective of the present study was to formulate and evaluate liposomes loaded with isoniazid.Methods: Liposome of isoniazid was made by thin layer film hydration method. L-α-phosphatidylcholine and cholesterol were used to make multiamellar vesicles. Six batches of liposomes were prepared based on the different weight ratio of L-α-phosphatidylcholine and cholesterol. Differential scanning calorimetry (DSC) study conducted to study in any incompatibility.Results: The prepared liposomes were evaluated by particle size analysis, entrapment efficiency, release study and stability study. Particle sizes were determined from the scanning electron microscopy (SEM) photographs. When particle frequencies were plotted against particle diameter in the histogram, it showed that F1 batch had a skewed distribution towards smaller liposomes while F6 shows a proper bell-shaped curve with a mean at 225 mm. The percentage entrapment efficiency was found to be 8.99 ± 0.15 to 4.19 ± 0.12 % respectively. From the release profile, it was seen that F1 batch was fastest and F6 was slowest to release the drug. The satisfactory batch F1 was packed in Eppendorf tube and stored at 4 °C temperature for one month. At the end of one month, the samples were analyzed for their physical properties, drug entrapment and in vitro release profile. The percentage release was found to be 96.5 ± 3.2 after 4 h.Conclusion: The F1 batch showed most promising results compared to other. No significant change was found during one month’s stability study of final batch (F1).


Author(s):  
Shubhangi Aher ◽  
Ravindra Pal Singh ◽  
Manish Kumar

The problem of bacterial conjunctivitis has dramatically increased in recent years due increased pollution and modern lifestyle. The present study was focused to fabricate Sparfloxacin loaded nanostructured lipid carriers (Spar-NLCs) for ophthalmic application to improve ocular penetration of drug and give sustained release of drug to reduce dosing frequency and toxic effect of drug associated with ocular membrane. A regular two-level factorial design was used to optimize the formulation parameters that are significantly affecting the formulation attributes. Spar-NLCs with particle size 171.1 ± 11 nm, zeta potential -49 ± 6.47 mV, entrapment efficiency 89.5 ± 5% and spherical in shape was obtained. Besides this, FTIR spectroscopy, differential scanning calorimetry, and transmission electron microscopy results suggest that the drug is successfully incorporated in NLC and has excellent compatibility with the excipients. In vitro release study follows Korsmeyer peppas model and suggests that 81.35 ± 6.2% release of drug from Spar-NLCs in 12 hours. The result of ex-vivo permeation study demonstrated 349.75 ± 7.3 µg/cm2 of permeation of drug, 44.482 µg cm-2 hr -1 of flux, and 0.1482 cm hr-1 of permeability coefficient which is 1.7 folds higher than pure drug suspension. The antimicrobial activity of Spar-NLCs was better than the pure drug suspension and equivalent to the marketed formulation. Spar-NLC formulation did not showed any ocular damage, swelling, and redness in in -vivo Draize test. The ocular tolerance test (HET-CAM test) also suggests that the Spar-NLC formulation and its excipients were nonirritant to the ocular tissues. The formulation was found to be stable over the three month of stability study. Therefore, this work strongly suggest that Spar-NLCs has higher penetration and extended release of drug which can be effectively used in prevention of bacterial conjunctivitis.


Author(s):  
G D Chandrethiya ◽  
P K Shelat ◽  
M N Zaveri

PEGylated gelatin nanoparticles loaded with colchicine were prepared by ethanol precipitation method. Poly-(ethylene glycol)-5000-monomethylether (MPEG 5000), a hydrophilic polymer, was used to pegylate gelatin.  Gluteraldehyde was used as cross-linking agent. To obtain a high quality product, major formulation parameters were optimized.  Spherical particles with mean particles of 193 nm were measured by a Malvern particle size analyzer. Entrapment efficiency was found to be 71.7 ± 1.4% and determined with reverse phase high performance liquid charomatography (RP-HPLC). The in vitro drug release study was performed by dialysis bag method for a period of 168 hours. Lyophilizaton study showed sucrose at lower concentrations proved the best cryoprotectant for this formulation.  Stability study revealed that lyophilized nanoparticles were equally effective (p < 0.05) after one year of storage at 2-8°C with ambient humidity. In vitro antitumoral activity was accessed using the MCF-7 cell line by MTT assay.  The IC50 value was found to be 0.034 μg/ml for the prepared formulation. The results indicate that PEGylated gelatin nanoparticles could be utilized as a potential drug delivery for targeted drug delivery of tumors.  


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2452
Author(s):  
Chia-Jung Hsieh ◽  
Ju-Chuan Cheng ◽  
Chia-Jung Hu ◽  
Chi-Yang Yu

Capturing and storing CO2 is of prime importance. The rate of CO2 sequestration is often limited by the hydration of CO2, which can be greatly accelerated by using carbonic anhydrase (CA, EC 4.2.1.1) as a catalyst. In order to improve the stability and reusability of CA, a silica-condensing peptide (R5) was fused with the fastest known CA from Sulfurihydrogenibium azorense (SazCA) to form R5-SazCA; the fusion protein successfully performed in vitro silicification. The entrapment efficiency reached 100% and the silicified form (R5-SazCA-SP) showed a high activity recovery of 91%. The residual activity of R5-SazCA-SP was two-fold higher than that of the free form when stored at 25 °C for 35 days; R5-SazCA-SP still retained 86% of its activity after 10 cycles of reuse. Comparing with an uncatalyzed reaction, the time required for the onset of CaCO3 formation was shortened by 43% and 33% with the addition of R5-SazCA and R5-SazCA-SP, respectively. R5-SazCA-SP shows great potential as a robust and efficient biocatalyst for CO2 sequestration because of its high activity, high stability, and reusability.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Chukwuebuka H. Ozoude ◽  
Chukwuemeka P. Azubuike ◽  
Modupe O. Ologunagba ◽  
Sejoro S. Tonuewa ◽  
Cecilia I. Igwilo

Abstract Background Khaya gum is a bark exudate from Khaya senegalensis (Maliaecae) that has drug carrier potential. This study aimed to formulate and comparatively evaluate metformin-loaded microspheres using blends of khaya gum and sodium alginate. Khaya gum was extracted and subjected to preformulation studies using established protocols while three formulations (FA; FB and FC) of metformin (1% w/v)-loaded microspheres were prepared by the ionic gelation method using 5% zinc chloride solution as the cross-linker. The formulations contained 2% w/v blends of khaya gum and sodium alginate in the ratios of 2:3, 9:11, and 1:1, respectively. The microspheres were evaluated by scanning electron microscopy, Fourier transform-infrared spectroscopy, differential scanning calorimetry, entrapment efficiency, swelling index, and in vitro release studies. Results Yield of 28.48%, pH of 4.00 ± 0.05, moisture content (14.59% ± 0.50), and fair flow properties (Carr’s index 23.68 ± 1.91 and Hausner’s ratio 1.31 ± 0.03) of the khaya gum were obtained. FTIR analyses showed no significant interaction between pure metformin hydrochloride with excipients. Discrete spherical microspheres with sizes ranging from 1200 to 1420 μm were obtained. Drug entrapment efficiency of the microspheres ranged from 65.6 to 81.5%. The release of the drug from microspheres was sustained for the 9 h of the study as the cumulative release was 62% (FA), 73% (FB), and 80% (FC). The release kinetics followed Korsmeyer-Peppas model with super case-II transport mechanism. Conclusion Blends of Khaya senegalensis gum and sodium alginate are promising polymer combination for the preparation of controlled-release formulations. The blend of the khaya gum and sodium alginate produced microspheres with controlled release properties. However, the formulation containing 2:3 ratio of khaya gum and sodium alginate respectively produced microspheres with comparable controlled release profiles to the commercial brand metformin tablet.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Sultan Alshehri ◽  
Syed Sarim Imam ◽  
Md Rizwanullah ◽  
Khalid Umar Fakhri ◽  
Mohd Moshahid Alam Rizvi ◽  
...  

In the present study, thymoquinone (TQ)-encapsulated chitosan- (CS)-coated poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) were formulated using the emulsion evaporation method. NPs were optimized by using 33-QbD approach for improved efficacy against breast cancer. The optimized thymoquinone loaded chitosan coated Poly (d,l-lactide-co-glycolide) nanoparticles (TQ-CS-PLGA-NPs) were successfully characterized by different in vitro and ex vivo experiments as well as evaluated for cytotoxicity in MDA-MB-231 and MCF-7 cell lines. The surface coating of PLGA-NPs was completed by CS coating and there were no significant changes in particle size and entrapment efficiency (EE) observed. The developed TQ-CS-PLGA-NPs showed particle size, polydispersibility index (PDI), and %EE in the range between 126.03–196.71 nm, 0.118–0.205, and 62.75%–92.17%. The high and prolonged TQ release rate was achieved from TQ-PLGA-NPs and TQ-CS-PLGA-NPs. The optimized TQ-CS-PLGA-NPs showed significantly higher mucoadhesion and intestinal permeation compared to uncoated TQ-PLGA-NPs and TQ suspension. Furthermore, TQ-CS-PLGA-NPs showed statistically enhanced antioxidant potential and cytotoxicity against MDA-MB-231 and MCF-7 cells compared to uncoated TQ-PLGA-NPs and pure TQ. On the basis of the above findings, it may be stated that chitosan-coated TQ-PLGA-NPs represent a great potential for breast cancer management.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


2021 ◽  
Vol 18 ◽  
Author(s):  
Sonia S. Pandey ◽  
Farhinbanu I. Shaikh ◽  
Arti R. Gupta ◽  
Rutvi J. Vaidya

Background: Despite significant biological effects, the clinical use of chrysin has been restricted because of its poor oral bioavailability. Objective: The purpose of the present research was to investigate the targeting potential of Mannose decorated chrysin (5,7- dihydroxyflavone) loaded solid lipid nanocarrier (MC-SLNs) for gastric cancer. Methods: The Chrysin loaded SLNs (C-SLNs) were developed optimized, characterized and further mannosylated. The C-SLNs were developed with high shear homogenizer, optimized with 32 full factorial designs and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) and evaluated for particle size/polydispersity index, zeta-potential, entrapment efficiency, % release and haemolytic toxicity. The ex-vivo cytotoxicity study was performed on gastric cancer (ACG) and normal cell lines. Results: DSC and XRD data predict the chrysin encapsulation in lipid core and FTIR results confirm the mannosylation of C-SLNs. The optimized C-SLNs exhibited a narrow size distribution with a particle size of 285.65 nm. The % Entrapment Efficiency (%EE) and % controlled release were found to be 74.43% and 64.83%. Once C-SLNs were coated with mannose, profound change was observed in dependent variable - increase in the particle size of MC-SLNs (307.1 nm) was observed with 62.87% release and 70.8% entrapment efficiency. Further, the in vitro studies depicted MC- SLNs to be least hemolytic than pure chrysin and C-SLNs. MC-SLNs were most cytotoxic and were preferably taken up ACG tumor cells as evaluated against C-SLNs. Conclusion: These data suggested that the MC-SLNs demonstrated better biocompatibility and targeting efficiency to treat the gastric cancer.


2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1853-1863
Author(s):  
Shubhra Rai ◽  
Gopal Rai ◽  
Ashish Budhrani

Lipospheres represent a novel type of fat-based encapsulation system produced for the topical drug delivery of bioactive compounds. The goal of this research work was to develop lipospheres, including ketoprofen applied for topical skin drug delivery. Ketoprofen lipospheres were formulated by melt emulsification method using stearic acid and Phospholipon® 90G. The lipospheres were analysed in terms of particle size and morphology, entrapment efficiency, Differential scanning calorimetry, In-vitro drug release, In-vivo (Anti-inflammatory activity). Outcomes of research revealed that particle size was found to be 9.66 µm and entrapment efficiency 86.21 ± 5.79 %. In-vivo, the study of ketoprofen loaded lipospheres formulation shows a higher plain formulation concentration in plasma (5.61 mg/mL). For dermis, ketoprofen retention was 27.02 ± 5.4 mg/mL for the lipospheres formulation, in contrast to that of the plain formulation group (10.05 ± 2.8 mg/mL). The anti-inflammatory effect of liposphere drug delivery systems was assessed by the xylene induced ear oedema technique and compared with marketed products. Finally, it seems that the liposphere drug delivery system possesses superior anti-inflammatory activity as compared to the marketed product gel consistencies. Liposphere may be capable of entrapping the medicament at very high levels and controlling its release over an extended period. Liposphere furnishes a proper size for topical delivery as well as is based on non-irritating and non-toxic lipids; it’s a better option for application on damaged or inflamed skin.


Sign in / Sign up

Export Citation Format

Share Document