scholarly journals Recent Advances in Thermoresponsive OEGylated Poly(amino acid)s

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1813
Author(s):  
Chao Geng ◽  
Shixue Wang ◽  
Hongda Wang

Thermoresponsive polymers have been widely studied in the past decades due to their potential applications in biomedicine, nanotechnology, and so on. As is known, poly(N-isopropylacrylamide) (PNIPAM) and poly(oligo(ethylene glycol)methacrylates) (POEGMAs) are the most popular thermoresponsive polymers, and have been studied extensively. However, more advanced thermoresponsive polymers with excellent biocompatibility, biodegradability, and bioactivity also need to be developed for biomedical applications. OEGylated poly(amino acid)s are a kind of novel polymer which are synthesized by attaching one or multiple oligo(ethylene glycol) (OEG) chains to poly(amino acid) (PAA).These polymers combine the great solubility of OEG, and the excellent biocompatibility, biodegradability and well defined secondary structures of PAA. These advantages allow them to have great application prospects in the field of biomedicine. Therefore, the study of OEGylated poly(amino acid)s has attracted more attention recently. In this review, we summarized the development of thermoresponsive OEGylated poly(amino acid)s in recent years, including the synthesis method (such as ring-opening polymerization, post-polymerization modification, and Ugi reaction), stimuli-response behavior study, and secondary structure study. We hope that this periodical summary will be more conducive to design, synthesis and application of OEGylated poly(amino acid)s in the future.

2019 ◽  
Author(s):  
Colin Swenson ◽  
Arventh Velusamy ◽  
Hector Argueta-Gonzalez ◽  
Jennifer Heemstra

<div> <div> <div> <p>Nucleic acids and proteins are the fundamental biopolymers that support all life on Earth. Nucleic acids store large amounts of information in nucleobase sequences while peptides and proteins utilize diverse amino acid functional groups to adopt complex structures and perform wide-ranging activities. Although Nature has evolved machinery to read the nucleic acid code and translate it into amino acid code, the extant biopolymers are restricted to encoding amino acid or nucleotide sequences separately, limiting their potential applications in medicine and biotechnology. Here we describe the design, synthesis, and stimuli-responsive assembly behavior of a bilingual biopolymer that integrates both amino acid and nucleobase sequences into a single peptide nucleic acid (PNA) scaffold to enable tunable storage and retrieval of tertiary structural behavior and programmable molecular recognition capabilities. Incorporation of a defined sequence of amino acid side-chains along the PNA backbone yields amphiphiles having a “protein code” that directs self-assembly into micellar architectures in aqueous conditions. However, these amphiphiles also carry a “nucleotide code” such that subsequent introduction of a complementary RNA strand induces a sequence-specific disruption of assemblies through hybridization. Together, these properties establish bilingual PNA as a powerful biopolymer that combines two information systems to harness structural responsiveness and sequence recognition. The PNA scaffold and our synthetic system are highly generalizable, enabling fabrication of a wide array of user-defined peptide and nucleotide sequence combinations for diverse future biomedical and nanotechnology applications. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Colin Swenson ◽  
Arventh Velusamy ◽  
Hector Argueta-Gonzalez ◽  
Jennifer Heemstra

<div> <div> <div> <p>Nucleic acids and proteins are the fundamental biopolymers that support all life on Earth. Nucleic acids store large amounts of information in nucleobase sequences while peptides and proteins utilize diverse amino acid functional groups to adopt complex structures and perform wide-ranging activities. Although Nature has evolved machinery to read the nucleic acid code and translate it into amino acid code, the extant biopolymers are restricted to encoding amino acid or nucleotide sequences separately, limiting their potential applications in medicine and biotechnology. Here we describe the design, synthesis, and stimuli-responsive assembly behavior of a bilingual biopolymer that integrates both amino acid and nucleobase sequences into a single peptide nucleic acid (PNA) scaffold to enable tunable storage and retrieval of tertiary structural behavior and programmable molecular recognition capabilities. Incorporation of a defined sequence of amino acid side-chains along the PNA backbone yields amphiphiles having a “protein code” that directs self-assembly into micellar architectures in aqueous conditions. However, these amphiphiles also carry a “nucleotide code” such that subsequent introduction of a complementary RNA strand induces a sequence-specific disruption of assemblies through hybridization. Together, these properties establish bilingual PNA as a powerful biopolymer that combines two information systems to harness structural responsiveness and sequence recognition. The PNA scaffold and our synthetic system are highly generalizable, enabling fabrication of a wide array of user-defined peptide and nucleotide sequence combinations for diverse future biomedical and nanotechnology applications. </p> </div> </div> </div>


2014 ◽  
Vol 14 (7) ◽  
pp. 984-993 ◽  
Author(s):  
Gabriela Luna-Palencia ◽  
Federico Martinez-Ramos ◽  
Ismael Vasquez-Moctezuma ◽  
Manuel Fragoso-Vazquez ◽  
Jessica Mendieta-Wejebe ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 906
Author(s):  
Le Minh Tu Phan ◽  
Thuy Anh Thu Vo ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.


Author(s):  
Ronisha Ramamurthy ◽  
Chetan H. Mehta ◽  
Usha Y. Nayak

Abstract Antimicrobial resistance not only increases the contagiousness of infectious diseases but also a threat for the future as it is one of the health care concern around the globe. Conventional antibiotics are unsuccessful in combating chronic infections caused by multidrug-resistant (MDR) bacteria, therefore it is important to design and develop novel strategies to tackle this problems. Among various novel strategies, Structurally Nanoengineered Antimicrobial Peptide Polymers (SNAPPs) have been introduced in recent years to overcome this global health care issue and they are found to be more efficient in their performance. Many facile methods are adapted to synthesize complex SNAPPs with required dimensions and unique functionalities. Their unique characteristics and remarkable properties have been exploited for their immense applications in various fields including biomedicine, targeting therapies, gene delivery, bioimaging, and many more. This review article deals with its background, design, synthesis, mechanism of action, and wider applications in various fields of SNAPPs. Graphic abstract


RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20025-20034 ◽  
Author(s):  
Yuling Li ◽  
Sai Wang ◽  
Dandan Zhu ◽  
Yuling Shen ◽  
Baixiang Du ◽  
...  

Reversibly shell cross-linked micelles based on a lipoic acid (LA) decorated triblock copolymer poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)-b-poly(l-phenylalanine) have been developed for efficient intracellular delivery of DOX.


Sign in / Sign up

Export Citation Format

Share Document