scholarly journals Research on the Fused Deposition Modeling of Polyether Ether Ketone

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2344
Author(s):  
Ruoxiang Gao ◽  
Jun Xie ◽  
Jinghui Yang ◽  
Chaojie Zhuo ◽  
Jianzhong Fu ◽  
...  

As a special engineering polymer, polyether ether ketone (PEEK) has been used widely due to its excellent mechanical properties, high thermal stability, and chemical resistance. Fused deposition modeling (FDM) is a promising process for fabricating PEEK parts. However, due to the semi-crystalline property and high melting point of PEEK, determining appropriate process parameters is important to reduce warpage deformation and improve the mechanical properties of PEEK. In this article, the influence of raster angle and infill density was determined by single factor experiment, which are the two most important parameters. The results showed that samples with 0°/90° raster angle and 50% infill density had the best comprehensive properties in terms of warpage deformation, tensile strength, and specific strength. Subsequently, based on the results above, the effects of printing speed, nozzle temperature, platform temperature, raster width, and layer thickness were analyzed by orthogonal experiment. The results indicated that platform temperature had the greatest impact on warpage deformation while printing speed and nozzle temperature were significant parameters on tensile strength. Through optimization, warpage deformation of the samples could be reduced to almost 0 and tensile strength could increase by 19.6% (from 40.56 to 48.50 MPa). This will support the development of FDM for PEEK.

2022 ◽  
pp. 095400832110673
Author(s):  
Pei Wang ◽  
Aigang Pan ◽  
Liu Xia ◽  
Yitao Cao ◽  
Hongjie Zhang ◽  
...  

As a rapidly developing additive manufacturing technology, fused deposition modeling (FDM) has become widespread in many industry fields. It can fabricate complicated geometries using filament of thermoplastic materials such as PP, polylactic acid, acrylonitrile butadiene styrene, etc. However, poor mechanical properties of raw materials limit their application. Poly-ether-ether-ketone is a type of special engineering plastic with high performance, which could be further reinforced by adding carbon fibers (CFs). During FDM process, the mechanical properties of printed parts are largely subject to careful selection of process parameters. To improve the mechanical properties of PEEK and CF/PEEK 3D-printed parts, the effects of various process parameters including building orientation, raster angle, nozzle temperature, platform temperature, ambient temperature, printing speed, layer thickness, infill density, and number of printed parts on mechanical properties were investigated. The tensile fracture interfaces of printed parts were observed by scanning electron microscope (SEM) to explain the influence mechanism of process parameters. In the single factor experiments, flat and on-edge specimens show the best tensile and flexural strength, respectively; the specimens with raster angle ±45° and 0° show the best tensile and flexural strength, respectively. When the nozzle temperature at 500°C, platform temperature at 200°C, ambient temperature at 150°C, printing speed is 20 mm/s, layer thickness is 0.2 mm, and infill density is 100%, the printed parts exhibit the best mechanical properties.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 466 ◽  
Author(s):  
Yiqiao Wang ◽  
Wolf-Dieter Müller ◽  
Adam Rumjahn ◽  
Andreas Schwitalla

In this review, we discuss the parameters of fused deposition modeling (FDM) technology used in finished parts made from polyether ether ketone (PEEK) and also the possibility of printing small PEEK parts. The published articles reporting on 3D printed PEEK implants were obtained using PubMed and search engines such as Google Scholar including references cited therein. The results indicate that although many have been experiments conducted on PEEK 3D printing, the consensus on a suitable printing parameter combination has not been reached and optimized parameters for printing worth pursuing. The printing of reproducible tiny-sized PEEK parts with high accuracy has proved to be possible in our experiments. Understanding the relationships among material properties, design parameters, and the ultimate performance of finished objects will be the basis for further improvement of the quality of 3D printed medical devices based on PEEK and to expand the polymers applications.


2020 ◽  
pp. 009524432091683 ◽  
Author(s):  
Mojtaba Nabipour ◽  
Behnam Akhoundi

Recently, applications of three-dimensional (3-D) printers have extensively been increased in various industries. Fused deposition modeling process is one of the most widely used 3-D printing methods in this area due to its simplicity, reliability, and the ability to produce complex parts made of thermoplastic materials. In this research, composite sample parts consisted of copper particles with a constant 25 wt% of metallic powder as a filler and acrylonitrile butadiene styrene granules as a polymeric matrix. A filament production line to acquire printable filaments was applied and its optimum parameters were reported. Four printing parameters involved nozzle diameter, layer height, raster angle, and nozzle temperature were chosen in three levels for investigation of composite samples’ tensile strength, density, and production time as a new study. The Taguchi method, a well-known design of experiment tool, was employed to find the effect of each parameter and optimum levels with including the main effect, signal-to-noise ratio, and analysis of variance. Finally, optimum composite specimens manufactured by 3-D printer verified Taguchi method analysis and results.


2014 ◽  
Vol 592-594 ◽  
pp. 1075-1079 ◽  
Author(s):  
Swayam Bikash Mishra ◽  
Siba Sankar Mahapatra

Fused Deposition Modeling (FDM) is one of the efficient rapid prototyping (RP) technologies that forms 3D objects by adding material layer by layer from CAD generated solid models. However, the FDM built part is hardly anisotropic in nature due to layer-by-layer build mechanism. Literature suggests that mechanical property, especially tensile strength, of FDM built part is severely affected by process parameters. Among all the parameters, contour number happens to be an important parameter because it reduces stress concentration resulting in avoidance of premature breakdown. Therefore, in this work contour number along with five important process parameters such as layer thickness, raster width, part orientation, raster angle and air gap are considered and their effect on tensile strength of FDM built parts is studied. Experiments are conducted using Face Centred Central Composite Design (FCCCD) in order to reduce the experimental runs. An optimal parameter setting has been suggested for the maximisation of tensile strength of the FDM built parts.


2019 ◽  
Vol 8 (3) ◽  
pp. 7635-7639

Influence of layer thickness nozzle temperature and angle on tensile strength of PLA fabricated with FDM (FFF) was experimentally investigated. Polylactic Acid (PLA) is a semi-crystalline and bio-friendly thermoplastic polymer has identified as important material in different applications due to its mechanical characteristics. Fused Deposition Modeling (FDM) is a one of the proved technology in Fused Filament Fabrication (FFF) technique in additive manufacturing process. In present investigation different specimens were fabricated using FDM technique with different layer height and different layer angles for finding influence of these manufacturing parameters on tensile strength of the specimen. Specimens were fabricated and tested as per ASTM D638 standard. It is clearly observed that tensile strength is more for +450 /-450 layer angle than the +00 /-0 0 layer angle for a given layer height(h=0.10 mm, h=0.15mm and h=0.20mm).The TAGUCHI analysis is carried with nozzle temperature, layer thickness and angle finding optimal values. It has been observed that, the optimal parameter is angle, which is equal to 30 0 .the ANOVA variation of angle layer with tensile strength has been observed that 18.10-31.90.


2022 ◽  
Vol 10 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Shilpesh R. Rajpurohit ◽  
Harshit K. Dave ◽  
Kamlakar P. Rajurkar

The application of Fused Deposition Modeling (FDM) is restricted due to limited information about the mechanical properties of printed parts. Therefore, it is required to determine the mechanical properties of the FDM properties to avail the full benefit of the FDM process. In the present study, Classic Laminate Theory (CLT) has been employed at the different configurations of layer thickness and raster width. The required elastic constant of material for CLT has been experimentally obtained through FDM printed Polylactic Acid (PLA) unidirectional specimens at 0°, 45° and 90° for different combinations of layer height and raster width. For these different combinations of layer height and raster width, constitutive models were developed to predict the tensile properties of the PLA parts. Tensile strength of the FDM printed bi-directional specimens has been experimentally obtained to validate the proposed CLT model results. The experimental tensile strength data is in good agreement with the data predicted by the proposed CLT model. Higher tensile strength and modulus were achieved with 0° raster angle compared to 90° raster angle. In the case of a bi-directional printed specimen, higher tensile strength was obtained with 45°/-45° raster angle followed by 30°/-60° and 0°/90° raster angle.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Debashis Mishra ◽  
Anil Kumar Das

PurposeThe purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was performed to identify the relationship between the chosen factors and the tensile strength of acrylonitrile butadiene styrene (ABS) and carbon fiber polylactic acid (PLA) thermoplastic material, FDM printed specimens. The relationship was demonstrated by using the linear experimental model analysis, and a prediction expression was established. The developed prediction expression can be used for the prediction of tensile strength of selected thermoplastic materials at a 95% confidence level.Design/methodology/approachThe Taguchi L9 experimental methodology was used to plan the total number of experiments to be performed. The process parameters were chosen as three at three working levels. The working range of chosen factors was the printing speed (60, 80 and 100mm/min), 40%, 60% and 80% as the infill density and 0.1mm, 0.2mm and 0.3mm as the layer thickness. The fused deposition modeling process parameters were optimized to get the maximum tensile strength in FDM printed ABS and carbon fiber PLA thermoplastic material specimens.FindingsThe optimum condition was achieved by the process optimization, and the desired results were obtained. The maximum desirability was achieved as 0.98 (98%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.3mm. The strength of the ABS specimen was predicted to be 23.83MPa. The observed strength value was 23.66MPa. The maximum desirability was obtained as 1 (100%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.2mm. The strength of the carbon fiber PLA specimen was predicted to be 26.23MPa, and the obtained value was 26.49MPa.Research limitations/implicationsThe research shows the useful process parameters and their suitable working conditions to print the tensile specimens of the ABS and carbon fiber PLA thermoplastics by using the fused deposition modeling technique. The process was optimized to identify the most influential factor, and the desired optimum condition was achieved at which the maximum tensile strength was reported. The produced prediction expression can be used to predict the tensile strength of ABS and carbon fiber PLA filaments.Practical implicationsThe results obtained from the experimental investigation are useful to get an insight into the FDM process and working limits to print the parts by using the ABS and carbon fiber PLA material for various industrial and structural applications.Social implicationsThe results will be useful in choosing the suitable thermoplastic filament for the various prototyping and structural applications. The products that require freedom in design and are difficult to produce by most of the conventional techniques can be produced at low cost and in less time by the fused deposition modeling technique.Originality/valueThe process optimization shows the practical exposures to state an optimum working condition to print the ABS and carbon fiber PLA tensile specimens by using the FDM technique. The carbon fiber PLA shows better strength than ABS thermoplastic material.


Author(s):  
Timoumi Mohamed ◽  
Najoua Barhoumi ◽  
Khalid Lamnawar ◽  
Abderrahim Maazouz ◽  
Amna Znaidi

The interesting mechanical properties of polyether ether ketone give the material a place among the foremost competitors when it comes to replacing metal. Fused deposition modeling has been recognized as an alternative method to process polyether ether ketone parts. In this study, the effect of different process parameters such as nozzle, bed, and radiant temperatures as well as printing speed and layer thickness on the tensile properties of three-dimensional printed polyether ether ketone was investigated. The optimization of the tensile properties of PEEK were studied by performing a reduced number of experiments, using the experimental design method based on the Taguchi approach which limits the number of experiments to 8 instead of 32. Results showed that a decent Young’s modulus was found by setting the nozzle temperature, print speed, and bed temperatures to their high levels and by setting the layer thickness and radiant temperature to their low level. Using these parameters, a Young’s modulus of 3.5 GPa was obtained, which represents 87.5% of the value indicated in the technical sheet. With these settings, we also found a tensile strength of 45.5 MPa, which corresponds to 46.4% of the value given by the studied polyether ether ketone material. A scanning electron microscopic investigation of the porosity and interlayer adhesion, confirmed that a higher bed temperature also tended to promote adhesion between layers.


Sign in / Sign up

Export Citation Format

Share Document