scholarly journals Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2561
Author(s):  
Diako Khodaei ◽  
Carlos Álvarez ◽  
Anne Maria Mullen

Biodegradable polymers are non-toxic, environmentally friendly biopolymers with considerable mechanical and barrier properties that can be degraded in industrial or home composting conditions. These biopolymers can be generated from sustainable natural sources or from the agricultural and animal processing co-products and wastes. Animals processing co-products are low value, underutilized, non-meat components that are generally generated from meat processing or slaughterhouse such as hide, blood, some offal etc. These are often converted into low-value products such as animal feed or in some cases disposed of as waste. Collagen, gelatin, keratin, myofibrillar proteins, and chitosan are the major value-added biopolymers obtained from the processing of animal’s products. While these have many applications in food and pharmaceutical industries, a significant amount is underutilized and therefore hold potential for use in the generation of bioplastics. This review summarizes the research progress on the utilization of meat processing co-products to fabricate biodegradable polymers with the main focus on food industry applications. In addition, the factors affecting the application of biodegradable polymers in the packaging sector, their current industrial status, and regulations are also discussed.

2020 ◽  
Vol 35 (4) ◽  
pp. 491-515
Author(s):  
Tom Lindström ◽  
Folke Österberg

AbstractThis review deals with the evolution of bio-based packaging and the emergence of various nanotechnologies for primary food packaging. The end-of life issues of packaging is discussed and particularly the environmental problems associated with microplastics in the marine environment, which serve as a vector for the assimilation of persistent organic pollutants in the oceans and are transported into the food chain via marine and wild life. The use of biodegradable polymers has been a primary route to alleviate these environmental problems, but for various reasons the market has not developed at a sufficient pace that would cope with the mentioned environmental issues. Currently, the biodegradable plastics only constitute a small fraction of the fossil-based plastic market. Fossil-based plastics are, however, indispensable for food safety and minimization of food waste, and are not only cheap, but has generally more suitable mechanical and barrier properties compared to biodegradable polymers. More recently, various nanotechnologies such as the use of nanoclays, nanocellulose, layer-by-layer technologies and polyelectrolyte complexes have emerged as viable technologies to make oxygen and water vapor barriers suitable for food packaging. These technological developments are highlighted as well as issues like biodegradation, recycling, legislation issues and safety and toxicity of these nanotechnologies.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Hui-Hui Su ◽  
Fei Peng ◽  
Pei Xu ◽  
Xiao-Ling Wu ◽  
Min-Hua Zong ◽  
...  

Abstract Background Glucaric acid, one of the aldaric acids, has been declared a “top value-added chemical from biomass”, and is especially important in the food and pharmaceutical industries. Biocatalytic production of glucaric acid from glucuronic acid is more environmentally friendly, efficient and economical than chemical synthesis. Uronate dehydrogenases (UDHs) are the key enzymes for the preparation of glucaric acid in this way, but the poor thermostability and low activity of UDH limit its industrial application. Therefore, improving the thermostability and activity of UDH, for example by semi-rational design, is a major research goal. Results In the present work, three UDHs were obtained from different Agrobacterium tumefaciens strains. The three UDHs have an approximate molecular weight of 32 kDa and all contain typically conserved UDH motifs. All three UDHs showed optimal activity within a pH range of 6.0–8.5 and at a temperature of 30 °C, but the UDH from A. tumefaciens (At) LBA4404 had a better catalytic efficiency than the other two UDHs (800 vs 600 and 530 s−1 mM−1). To further boost the catalytic performance of the UDH from AtLBA4404, site-directed mutagenesis based on semi-rational design was carried out. An A39P/H99Y/H234K triple mutant showed a 400-fold improvement in half-life at 59 °C, a 5 °C improvement in $$ {\text{T}}_{ 5 0}^{ 1 0} $$ T 50 10 value and a 2.5-fold improvement in specific activity at 30 °C compared to wild-type UDH. Conclusions In this study, we successfully obtained a triple mutant (A39P/H99Y/H234K) with simultaneously enhanced activity and thermostability, which provides a novel alternative for the industrial production of glucaric acid from glucuronic acid.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 220
Author(s):  
Wubliker Dessie ◽  
Zongcheng Wang ◽  
Xiaofang Luo ◽  
Meifeng Wang ◽  
Zuodong Qin

Succinic acid (SA) is one of the top candidate value-added chemicals that can be produced from biomass via microbial fermentation. A considerable number of cell factories have been proposed in the past two decades as native as well as non-native SA producers. Actinobacillus succinogenes is among the best and earliest known natural SA producers. However, its industrial application has not yet been realized due to various underlying challenges. Previous studies revealed that the optimization of environmental conditions alone could not entirely resolve these critical problems. On the other hand, microbial in silico metabolic modeling approaches have lately been the center of attention and have been applied for the efficient production of valuable commodities including SA. Then again, literature survey results indicated the absence of up-to-date reviews assessing this issue, specifically concerning SA production. Hence, this review was designed to discuss accomplishments and future perspectives of in silico studies on the metabolic capabilities of SA producers. Herein, research progress on SA and A. succinogenes, pathways involved in SA production, metabolic models of SA-producing microorganisms, and status, limitations and prospects on in silico studies of A. succinogenes were elaborated. All in all, this review is believed to provide insights to understand the current scenario and to develop efficient mathematical models for designing robust SA-producing microbial strains.


2018 ◽  
Vol 10 (10) ◽  
pp. 3456 ◽  
Author(s):  
Peng Jiang ◽  
Yi-Chung Hu ◽  
Ghi-Feng Yen ◽  
Hang Jiang ◽  
Yu-Jing Chiu

As a crucial part of producer services, the logistics industry is highly dependent on the manufacturing industry. In general, the interactive development of the logistics and manufacturing industries is essential. Due to the existence of a certain degree of interdependence between any two factors, interaction between the two industries has produced a basis for measurement; identifying the key factors affecting the interaction between the manufacturing and logistics industries is a kind of decision problem in the field of multiple criteria decision making (MCDM). A hybrid MCDM method, DEMATEL-based ANP (DANP) is appropriate to solve this problem. However, DANP uses a direct influence matrix, which involves pairwise comparisons that may be more or less influenced by the respondents. Therefore, we propose a decision model, Grey DANP, which can automatically generate the direct influence matrix. Statistical data for the logistics and manufacturing industries in the China Statistical Yearbook (2006–2015) were used to identify the key factors for interaction between these two industries. The results showed that the key logistics criteria for interaction development are the total number of employees in the transport business, the volume of goods, and the total length of routes. The key manufacturing criteria for interaction development are the gross domestic product and the value added. Therefore, stakeholders should increase the number of employees in the transport industry and freight volumes. Also, the investment in infrastructure should be increased.


2021 ◽  
Vol 12 (2) ◽  
pp. 217-268
Author(s):  
Nana Liu ◽  
Zeshui Xu ◽  
Marinko Skare

Research background: The outbreak and spread of COVID-19 brought disastrous influences to the development of human society, especially the development of economy. Purpose of the article: Considering that knowing about the situations of the existing studies about COVID-19 and economy is not only helpful to understand the research progress and the connections between COVID-19 and economy, but also provides effective suggestions for fighting against COVID-19 and protecting economy, this paper analyzes the existing studies on COVID-19 and economy from the perspective of bibliometrics. Methods: Firstly, the discussion starts from the statistical analysis, in which the basic distributions of the studies on different countries/regions, different publication sources, different publication years, etc., are presented. Then, the paper shows the cooperation situations of the researchers from analyzing the related citation networks, co-citation networks and cooperation networks. Further, the theme analysis of the related studies is presented, in which the related co-occurrence networks are shown, and then the detailed analyses of the studies are introduced. Based on these analyses, the discussions about future research are presented, and finally we draw a conclusion. Findings & value added: The analyses not only present the basic situation on the research about COVID-19 and Economy, but also show the future research trends, which can provide meaningful research expectations.


2019 ◽  
Author(s):  
Stefano Bertacchi ◽  
Maurizio Bettiga ◽  
Danilo Porro ◽  
Paola Branduardi

Abstract Background: The sustainability of biorefineries is strongly related to the origin, the availability and the market of the biomass used as feedstock. Moreover, one of the pillars of circular economy aims at reducing waste, ideally to zero. These considerations well justify the increasing industrial interest in exploiting many and diverse residual biomasses. This work focuses on the valorization of the leftover from Camelina sativa oil extraction, named Camelina meal. Despite Camelina meal is used as animal feed, there is an increasing interest in further valorizing its macromolecular content or its nutritional value. Results: Here we valorized Camelina meal hydrolysates by using them as nutrient and energy source for shake-flask fermentations where Rhodosporidium toruloides , a yeast natural producer of carotenoids, accumulated these pigments as desired product. Initially, by total acid hydrolysis we determined that in Camelina meal carbohydrates account for a maximum of 30.8 ± 1.0 %. However, since the acid hydrolysis is not optimal for subsequent microbial fermentation, an enzymatic hydrolysis protocol was assessed, obtaining a maximum sugar recovery of 53.3%. Having stated that, by Separate Hydrolysis and Fermentation, with or without water insoluble solids (SHF, SHF+WIS), or Simultaneous Saccharification and Fermentation (SSF) we obtained 5.51 ± 0.67, 12.64 ± 2.57, and 15.97 ± 0.67 mg/L of carotenoids, respectively, from Camelina meal hydrolysate. Significantly, the presence of WIS, possibly containing microbial inhibitors, correlates with a higher titer of carotenoids, which can be seen as scavengers. Conclusions: The proposed study paves the way for the development of bioprocesses based on the exploitation of Camelina meal, scarcely investigated in the field before, as feedstock. The processes depicted provide an example of how different final products of industrial interests can be obtained from this leftover, such as pure carotenoids and carotenoid-enriched Camelina meal for the feed industry, without diminishing but possibly increasing its initial value. These data provide valuable basis for the economic evaluations necessary to assess the feasibility of a bioprocess based on Camelina meal to obtain high-value added products.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4936
Author(s):  
Ahmed Tawfik ◽  
Shou-Qing Ni ◽  
Hanem. M. Awad ◽  
Sherif Ismail ◽  
Vinay Kumar Tyagi ◽  
...  

Gelatin production is the most industry polluting process where huge amounts of raw organic materials and chemicals (HCl, NaOH, Ca2+) are utilized in the manufacturing accompanied by voluminous quantities of end-pipe effluent. The gelatinous wastewater (GWW) contains a large fraction of protein and lipids with biodegradability (BOD/COD ratio) exceeding 0.6. Thus, it represents a promising low-cost substrate for the generation of biofuels, i.e., H2 and CH4, by the anaerobic digestion process. This review comprehensively describes the anaerobic technologies employed for simultaneous treatment and energy recovery from GWW. The emphasis was afforded on factors affecting the biofuels productivity from anaerobic digestion of GWW, i.e., protein concentration, organic loading rate (OLR), hydraulic retention time (HRT), the substrate to inoculum (S0/X0) ratio, type of mixed culture anaerobes, carbohydrates concentration, volatile fatty acids (VFAs), ammonia and alkalinity/VFA ratio, and reactor configurations. Economic values and future perspectives that require more attention are also outlined to facilitate further advancement and achieve practicality in this domain.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 686
Author(s):  
Diana Lopes ◽  
Felisa Rey ◽  
Miguel C. Leal ◽  
Ana I. Lillebø ◽  
Ricardo Calado ◽  
...  

While complex lipids of seaweeds are known to display important phytochemical properties, their full potential is yet to be explored. This review summarizes the findings of a systematic survey of scientific publications spanning over the years 2000 to January 2021 retrieved from Web of Science (WoS) and Scopus databases to map the state of the art and identify knowledge gaps on the relationship between the complex lipids of seaweeds and their reported bioactivities. Eligible publications (270 in total) were classified in five categories according to the type of studies using seaweeds as raw biomass (category 1); studies using organic extracts (category 2); studies using organic extracts with identified complex lipids (category 3); studies of extracts enriched in isolated groups or classes of complex lipids (category 4); and studies of isolated complex lipids molecular species (category 5), organized by seaweed phyla and reported bioactivities. Studies that identified the molecular composition of these bioactive compounds in detail (29 in total) were selected and described according to their bioactivities (antitumor, anti-inflammatory, antimicrobial, and others). Overall, to date, the value for seaweeds in terms of health and wellness effects were found to be mostly based on empirical knowledge. Although lipids from seaweeds are little explored, the published work showed the potential of lipid extracts, fractions, and complex lipids from seaweeds as functional ingredients for the food and feed, cosmeceutical, and pharmaceutical industries. This knowledge will boost the use of the chemical diversity of seaweeds for innovative value-added products and new biotechnological applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Reann Garrett ◽  
Danielle Bellmer ◽  
William McGlynn ◽  
Patricia Rayas-Duarte

Brewer’s spent grain (BSG) is a processing waste generated in large quantities by the brewing industry. It is estimated that over 38 million tons of BSG is produced worldwide each year and is usually used as animal feed, composted, or thrown into landfills. BSG contains valuable nutritional components, including protein, fiber, and antioxidants. Due to its brittle texture, strong nutty flavors, and dark color profiles, BSG has seen limited use in food products for human consumption. The objective of this study was to develop a palatable chip product that maximized the level of inclusion of BSG. Chips were produced that contained BSG levels ranging from 8% to 40%, and the physical and sensory properties of the chips were evaluated. Spent grain samples were provided by Iron Monk in Stillwater and were dried at a low temperature and milled into flour for use in the chip formulation. BSG chips were evaluated for water activity, color, and texture (fracture force). An informal sensory evaluation was conducted to evaluate flavor, texture, and probability of purchase using a 5-point hedonic rating scale. Results showed that there were no significant differences in the texture of the chips containing different levels of BSG. The color measurements showed no significant differences between L ∗ and a ∗ values for the chips containing different inclusion levels of BSG, but there were some differences in the b ∗ values. Results from the sensory evaluation showed that consumers preferred the texture of chips with 40% BSG over chips with 8% BSG, and they were also more likely to purchase the 40% BSG chips. There were no significant differences in flavor among the chips containing different inclusion levels of BSG. These results suggest that, for a chip-type product, BSG inclusion levels up to 40% are possible with positive consumer responses. Development of an alternative value-added product represents an opportunity for breweries nationwide to turn a processing waste into a future asset.


Sign in / Sign up

Export Citation Format

Share Document