scholarly journals Highly Stretchable Fully Biomass Autonomic Self-Healing Polyamide Elastomers and Their Foam for Selective Oil Absorption

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3089
Author(s):  
Palraj Ranganathan ◽  
Chin-Wen Chen ◽  
Syang-Peng Rwei

Renewable polymers with self-healing ability, excellent elongation, hydrophobicity, and selective oil absorption attributes are of interest for an extensive range of applications, such as e-skin, soft robots, wearable devices, and cleaning up oil spills. Herein, two fully renewable eco-friendly polyamide (PA)-based self-healing elastomers (namely, PA36,IA, and PA36,36) were prepared by a facile and green one-pot melt polycondensation of itaconic acid (IA), PripolTM 1009, and PriamineTM 1075 monomers. The molecular structures of these PAs were analyzed by FITR, 1H NMR, and 13C NMR. The distinct structure of these PAs shows superior strain values (above 2300%) and high ambient temperature autonomous self-healing ability. Interestingly, the synthesized renewable PA36,36 showed zero water absorption values and hydrophobic properties with a contact angle of θ = 91o compared to the synthesized PA36,IA and other previously reported PAs. These excellent attributes are due to the low concentration of amide groups, the highly entangled main chains, the intermolecular diffusion, the manifold dangling chains, and the numerous reversible physical bonds within the renewable PAs. Furthermore, the hydrophobic properties may aid in the selective oil absorption of the PA36,36-based foam, for which PA36,36 foam is produced by the green supercritical carbon dioxide (scCO2) batch foaming process. The PA36,36 foam with a microporous cellular structure showed better absorption capacity and high stability in repeated use. Due to these advantages, these bio-based PAs have potential for the production of eco-friendly self-healing materials, superabsorbent foams, and other polymeric materials.

2012 ◽  
Vol 583 ◽  
pp. 14-17
Author(s):  
Dong Xiang Cheng ◽  
Hai Ning Ying ◽  
Huan Chi Jin ◽  
Yu Ling Zhang

Attapulgite fiber-aerogel composite was synthesized using sol-gel technology combining with surface modification and conventional drying to overcome the brittle disadvantage of traditional aerogel. Attapulgite fiber was added in the process of sol into gel, in order to enhance the mechanical property of SiO2 aerogel. Hydrophobic and low density fiber-aerogel composites were obtained in this experiment. Investigation of the removal of attapulgite reinforced SiO2 aerogel to TPH in water under low temperature was also carried out. The results showed that the attapulgite fiber-aerogel composites we obtained in this study had good performances of mechanical and hydrophobic properties; the removal rate of aerogel to TPH was 91.02% under the temperature of 10°C.


2014 ◽  
Vol 695 ◽  
pp. 69-72 ◽  
Author(s):  
Check Shyong Quek ◽  
Norzita Ngadi ◽  
Muhammad Abbas Ahmad Zaini ◽  
Seeram Ramakrishna

The natural hollow fiber, namely kapok, has been studied for the removal of oil, particularly in the area of oil spill clean-up. The hydrophobic nature of the natural absorbent has been demonstrated to exhibit (or show potential to exhibit) excellent oil absorption properties. Kapok fiber is inexpensive, readily available, very lightweight which makes it easy for transportation and its excellent buoyancy eases retrieval. Reusability of the material up to 15 cycles has been reported and this supports its being environmental-friendly. This paper looks into the oil absorption capacity of raw kapok fiber that can be dramatically enhanced by the simple mechanism of stirring. The oil absorption capacity is greatly increased to more than 200 times the mass of kapok used, i.e., with stirring, 1 g of the kapok fiber is able to absorb at least 200 g of the oil (200 g/g) which in this case is the refined palm oil used for cooking. The paper also discusses the reasons for the improvement due to stirring. And as a natural agricultural product which is abundant, besides being environmental-friendly, its application would be a sustainable approach to control water pollution due to oil spills and industrial organic contaminants.


2020 ◽  
Vol 14 (3) ◽  
pp. 225-238
Author(s):  
Cynthia E.I. Torres ◽  
Thelma S. Quezada ◽  
Israel López ◽  
Idalia G. de la Fuente ◽  
Francisco E.L. Rodríguez ◽  
...  

Aims: The purpose of this work was to obtain a hydrophobic sorbent material with potential applications in oil spill remediation. Background: The accidents due to oil spills cause long-term ecological damage, especially in the aquatic environment. The cleaning of oil spills can be carried out by many methods and techniques, being absorbents the most attractive due to the possibility of recovery and complete elimination of the hydrocarbons in situ from the water surface. In recent years, interest in polymeric materials for oil spill remediation has increased due to its low cost, high stability, and recyclability. Objective: The objective of this work was the development of sorbent materials based on polymer wastes, such as Polyethylene Terephthalate (PET), obtained from recycled bottles, and recycled Polyurethane (PU), for its application in the recovery of oil spills. Methods: Sorbent materials were prepared from polymer wastes, using salt molds for the formation of porous materials with a composition of PU of 5, 10 and 15%, which were subsequently hydrophobized using carbon nanotubes or silica nanoparticles by dip-coating technique. Results and Discussion: The obtained hydrophobic sorbent materials were characterized by Scanning Electron Microscopy (SEM) and Infrared Spectroscopy (FTIR). The resulting absorbent has shown capacity to separate oil from water; the best result was obtained by the sponge of PET-PU (10% PU) hydrophobized with a suspension with low multi-wall carbon nanotubes (MWCNTs) concentration, obtaining an absorption capacity of 2.01 g/g. Conclusion: Besides the standard sorption capacity, these cheap sorbent materials had interesting properties like low density, high hydrophobicity and buoyancy, which could be applied in other applications related to solving oil spills.


2012 ◽  
pp. 385-388 ◽  
Author(s):  
Azadeh Saadatmandi ◽  
Mohammad Elahi ◽  
Reza Farhoosh ◽  
Mahdi Karimi

The incorporation of sugar beet fiber (0–5%) to tortilla chips and the effects on the chemical and sensory properties were studied. Addition of sugar beet fiber (SBF) led to an increasing of water absorption capacity, ash content and darkness while lowering the protein content and oil absorption. Sensory evaluation showed that the overall acceptability of tortilla chips reduces if adding more than 2% SBF.


2020 ◽  
Vol 7 (04) ◽  
Author(s):  
SATYA NARAYAN SINGH ◽  
RAJESH G BURBADE ◽  
HITESH SANCHAVAT ◽  
P S PANDIT

The cereals of today are more nutritious and healthful than ever before. Cereals processing is one of the oldest and the most essential part of all food technologies. Pasta products and noodles have been staple foods since ancient times in many countries all over the world. In this study pasta formulation was substituted with blending sapota powder in different proportions (4 levels i.e. 0%, 10%, 20%, 30%) into semolina and maida flour separately. Pasta products were prepared using eight different formulations and adding water (approximately 31% of total weight) in DOLLY pasta extruder machine. All the samples were evaluated for physical properties: specific length (mm/g), bulk density (kg/m3), specific density (kg/m3) and porosity (%); functional properties: water absorption index (%), water solubility index (%) and oil absorption capacity (ml/g) and nutritional compositions: moisture (%), crude protein (%), fat (%) and carbohydrate (%). Highest specific length 36.20 mm/g was observed for T5 treatment, low bulk density 368.10 kg/m3 was observed for T5 and highest porosity 9.24% was found for T1 treatment. The maximum WAI, WSI values 325.83%, 17.33% respectively was observed for T1 treatment and minimum value of oil absorption capacity 1.06 ml/g for T8 treatment. The moisture content of dried pasta products was found in the range of 6 to 7%. The maximum value of crude protein 13.07% was found for T5 and minimum value 8.81% for T4 treatments. The fat contents were varied from 1.02% to 1.28 %. The maximum value of carbohydrate was 76.20% for T1 and minimum value 65.41% for T8.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiaqi Wang ◽  
Yan Chen ◽  
Qinyao Xu ◽  
Miaomiao Cai ◽  
Qian Shi ◽  
...  

AbstractSuperhydrophobic sponges have considerable potential for oil/water separation. Most of the methods used for superhydrophobic modification of sponges require toxic or harmful solvents, which have the drawbacks of hazardous to environment, expensive, and complex to utilize. Moreover, the hydrophobic layer on the surface of sponge is often easily destroyed. In this paper, a highly efficient superhydrophobic sponge with excellent reusability was developed by using a facile, simple and environmentally friendly dopamine biomimetic bonding method. Different types of sponges, such as melamine, polyethylene or polyurethane sponge wastes, were used as raw materials to prepare superhydrophobic sponges, which possess the advantages of inexpensive and abundant. The effects of different dopamine polymerization time and different hydrophobic agent dosage on the hydrophobicity and oil absorption capacity of melamine sponges were optimized. The study results showed that the water contact angle of the superhydrophobic sponge could reach 153° with excellent organic solvent absorption capacity of 165.9 g/g. Furthermore, the superhydrophobic sponge retained approximately 92.1% of its initial absorption capacity after 35 reutilization cycles. More importantly, the dopamine biomimetic bonding superhydrophobic modification method can be used for different types of sponges. Therefore, a universally applicable, facile, simple and environmentally friendly superhydrophobic modification method for sponges was developed.


2008 ◽  
Vol 136 ◽  
pp. 39-44 ◽  
Author(s):  
Willy C.K. Tan ◽  
J.C. Kiew ◽  
K.Y. Siow ◽  
Z.R. Sim ◽  
H.S. Poh ◽  
...  

When one cut himself, it's amazing to watch how quickly the body acts to mend the wound. Immediately, the body works to pull the skin around the cut back together. The concept of repair by bleeding of enclosed functional agents serves as the biomimetric inspiration of synthetic self repair systems. Such synthetic self repair systems are based on advancement in polymeric materials; the process of human thrombosis is the inspiration for the application of self healing fibres within the composite materials. Preliminary results based on flexural 3 point bend test on prepared samples have shown the healed hollow fibre laminate has a healed strength increase of 47.6% compared to the damaged baseline laminate. These results gave us confidence that there is a great potential to adopt such self healing mechanism on actual composite parts like in aircraft’s composite structures.


Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 145-152
Author(s):  
M. Hasmadi ◽  
M. Merlynda ◽  
A.H. Mansoor ◽  
I. Salwa ◽  
M.K. Zainol ◽  
...  

This study aimed to determine the proximate compositions and functional properties of sweet potato flour from different varieties cultivated in Sabah, Malaysia, namely Jepun, Kairot and Kaladi. The results showed that the moisture content of all flour samples was below 14%. The fat and protein content of Jepun sweet potato variety were significantly different (p<0.05) as compared with Kairot and Kaladi sweet potato varieties. The ash and dietary fibre content of Kairot sweet potato flour were higher (p<0.05) compared to Jepun and Kaladi flours. In addition, Kaladi sweet potato had the highest carbohydrate content (82%). There were significant differences (p<0.05) in the values of L*, a* and b* for all sweet potato flours. The Jepun sweet potato flour had the highest foaming capacity, water absorption capacity, oil absorption capacity, swelling power and viscosity. Rapid Visco analyser revealed that significant differences were observed for pasting parameters such as peak viscosity, trough viscosity, breakdown viscosity, final viscosity and setback viscosity. The gelatinisation properties showed that Kairot sweet potato flour had the highest onset temperature, conclusion temperature and enthalpy while Kaladi sweet potato flour had the highest peak temperature.


Sign in / Sign up

Export Citation Format

Share Document