scholarly journals Investigation on the Compressive Strength and Time of Setting of Low-Calcium Fly Ash Geopolymer Paste Using Response Surface Methodology

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3461
Author(s):  
Pauline Rose J. Quiatchon ◽  
Ithan Jessemar Rebato Dollente ◽  
Anabel Balderama Abulencia ◽  
Roneh Glenn De Guzman Libre ◽  
Ma. Beatrice Diño Villoria ◽  
...  

Approximately 2.78 Mt of coal fly ash is produced in the Philippines, with a low utilization rate. Using fly ash-based geopolymer for construction will lessen the load sent to landfills and will result in lower GHG emissions compared to OPC. It is necessary to characterize the fly ash and optimize the geopolymer components to determine if it can replace OPC for in situ applications. The activator-to-precursor ratio, the water-to-solids ratio, and the sodium hydroxide-to-sodium silicate ratio were optimized using a randomized I-optimal design from the experimental results of 21 runs with five replicates, for a total of 105 specimens of 50 mm × 50 mm × 50 mm paste cubes. The engineering properties chosen as the optimization responses were the unconfined compressive strength (UCS), the initial setting time, and the final setting time. The samples were also ambient-cured with the outdoor temperature ranging from 30 °C to 35 °C and relative humidity of 50% ± 10% to simulate the on-site environment. Runs with high unconfined compressive strength (UCS) and short setting times were observed to have a low water-to-solids (W/S) ratio. All runs with a UCS greater than 20 MPa had a W/S ratio of 0.2, and the runs with the lowest UCS had a W/S of 0.4. The initial setting time for design mixes with a W/S ratio of 0.2 ranged from 8 to 105 min. Meanwhile, five out of seven design mixes with a W/S ratio of 0.4 took longer than 1440 min to set. Specimens with an alkali activator ratio (NaOH/WG) of 0.5 (1:2) and 0.4 (1:2.5) also had significantly lower setting times than those with an alkali activator ratio of 1. The RSM model was verified through confirmatory tests. The results of the confirmatory tests are agreeable, with deviations from the expected UCS ranging from 0 to 38.12%. The generated model is a reliable reference to estimate the UCS and setting time of low-calcium FA geopolymer paste for in situ applications.

Author(s):  
Iwona Wilińska ◽  
Barbara Pacewska ◽  
Wojciech Kubissa

Utilization of fluidized fly ash in cement composite is problematic, e.g. because of its changeable chemical composition and increased water demand of the mixture. However, this kind of by-product shows some self-cementing properties, which may be beneficial for low-cement mixtures. The article compares the impact of various kinds of fly ashes, i.e. fluidized fly ash and conventional one, and their mixtures on hydration of fly ash–cement compositions in relation to properties of final material. The amount of fly ash in the binder was 50 wt%. Calorimetry, thermal analysis (TG/DTG) and infrared spectroscopy were used. Compressive strength and water absorption of hardened composites were also registered. It was found that both fly ashes exhibit delay effect in fly ash-cement pastes which causes extension of initial setting time and lower heat released compared to the reference without fly ash. At later hydration days, fluidized fly ash develops higher pozzolanic activity than conventional one. Compositions with fluidized fly ash show better compressive strength compared to those containing conventional one. Mixing of different materials of high and low activity (fluidized and conventional fly ash in this case) seems to be a good way for creation of new cement replacement material.


2015 ◽  
Vol 668 ◽  
pp. 181-188 ◽  
Author(s):  
Hanan El Nouhy ◽  
Enas Khattab ◽  
Sayieda Zeedan

The aim of this study is to investigate the effects of phosphogypsum on the properties of both cement pastes and mortars. Normal Portland cement CEM Ι 32,5N, Limestone Blended cement CEM ΙΙ B-L32,5N, and Slag cement CEM ΙΙ A-S32,5N were used. These cements were partially substituted by 0,2,4,6,8,10,and 15% of phosphogypsum. The test program was divided to two stages. In the first stage, tests were conducted according to BSEN 196, namely setting times (initial and final), soundness, and compressive strength (at ages 7 and 28 days). In the second stage, X-ray diffraction (XRD), and scanning electron microscope (SEM) were conducted on selected mixes from first stage. The results show that the three types of cements with the various replacement percentages of phosphogypsum met the limit of initial setting time, as well as, provided soundness of 2 mm. Also, in terms of compressive strength, it was proven, that it is possible to partially replace the three tested types of cements by phosphogypsum by up to 8%and 15% with regard to cement/sand ratio of (1:3) and (1:2) respectively.


2017 ◽  
Vol 898 ◽  
pp. 2010-2017 ◽  
Author(s):  
Xiao Ying Wang ◽  
Ming Zhang Lan ◽  
Wei Fang Hou ◽  
Bin Feng Xiang ◽  
Xu Dong Zhao

The effects of triethanolamine on the compressive strength and setting time of fly ash cementitious materials, slag cementitious materials, and limestone cementitious materials were investigated. The results show that the dosage of 0.04% of triethanolamine can significantly improve the 3d, 7d and 28d compressive strength of fly ash cementitious materials. It possesses less impact on the setting time. The dosage of 0.04% of triethanolamine can significantly improve the 3d and 7d compressive strength of slag cementitious materials while the effect of late strength is not obvious. It extends the initial setting time and the final setting time is not changed, which has retarding effect. The results of hydration heat and XRD show that triethanolamine extends the induction period of cement hydration, and gypsum is exhausted in advance during the hydration process. Triethanolamine promotes the transformation of AFt to AFm and there is no effect on the type of hydration products.


2018 ◽  
Vol 766 ◽  
pp. 157-163 ◽  
Author(s):  
Khanthima Hemra ◽  
Shuntaro Yamaguchi ◽  
Takaomi Kobayashi ◽  
Pavadee Aungkavattana ◽  
Sirithan Jiemsirilers

Class C fly ash is widely used as a geopolymer raw material. It contains high calcium oxide and iron oxide resulting in a fast setting property. The influence of using kaolin and metakaolin replaced class C fly ash in geopolymer processing were investigated in term of compressive strength and setting time. Kaolin and metakaolin which calcined at different temperature of 600°C and 700°C replaced Class C fly ash between 0 to 50 wt. %. The geopolymers were prepared at constant KOH concentration as 6.0 M, K2SiO3/KOH ratio as 1.0, solid/liquid ratio as 1.5 and 7 days of curing. The compressive strength is obviously increased when fly ash was replaced with both kinds of metakaolin, although, it is inclined to decrease when replaced by kaolin. The compressive strength is increased up to 13% and 47% with the replacement by 50 wt. % of metakaolin calcined at 600°C and 700°C, respectively. On the other hand, the replacement by 50 wt. % of kaolin give the initial setting time prolonging from about 6 min to 80 min. However, the initial setting time of metakaolin calcined at 600°C and 700°C replacement is also improved to about 37 min and 20 min, respectively. These results from their difference of amorphous phase and reactivity of the replacement materials. XRD analysis reveals the combination phases of amorphous geopolymer gel that is the broad hump centered at 28 – 30° 2θ, and products from the reaction such as calcium oxide, arcanite, calcium silicate hydrate, quartz and muscovite which the two latter are from unreacted metakaolin. They are confirmed by FT-IT result and microstructure evaluation by SEM. Therefore, the partially replacement of fly ash with kaolin and metakaolin in fly ash-based geopolymer production are affected to the compressive strength and resulted to modify the setting time.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1611
Author(s):  
Gintautas Skripkiūnas ◽  
Asta Kičaitė ◽  
Harald Justnes ◽  
Ina Pundienė

The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties of fresh cement paste rheology and hardening processes and on the strength of hardened concrete with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at different initial (two-day) curing temperatures (−10 °C to +20 °C) is presented. The rheology results showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal early strength (N type) cement pastes is much slower than in high early strength (R type) cement pastes. For both cement-type pastes, shortening the initial and final setting times is more effective when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is achieved at −5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive strength of samples at a −5 °C initial curing temperature, with high early strength cement exceeding 3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.


2020 ◽  
Vol 4 (1) ◽  
pp. 61
Author(s):  
Hardjono Hardjono ◽  
Cucuk Evi Lusiani ◽  
Agung Ari Wibowo ◽  
Mochammad Agung Indra Iswara

Produksi semen setengah jadi (clinker) membutuhkan energi yang tinggi sehingga menggunakan batu bara dalam jumlah besar. Hal ini menyebabkan biaya produksi dari pabrik semen juga tinggi. Kebutuhan energi yang besar untuk menghasilkan clinker tersebut dapat dikurangi dengan menambahan blast furnace slag sebagai campuran pembuatan semen. Campuran clinker dapat menghasilkan produk semen yang memiliki waktu pengikatan dan kuat tekan sesuai SNI. Pengaruh penambahan blast furnace slag sebagai campuran clinker terhadap waktu pengikatan dan kuat tekan semen dapat dioptimalkan dengan response surface methodology (RSM) menggunakan Central Composite Design (CCD). Optimasi dengan menggunakan RSM bertujuan untuk mengetahui kondisi optimum pada penambahan blast furnace slag dan clinker terhadap variabel respon berupa waktu pengikatan awal, waktu pengikatan akhir, dan kuat tekan. Hasil uji ANOVA dan analisis response surface menunjukkan bahwa penambahan blast furnace slag sebagai campuran dalam pembuatan semen memberikan pengaruh yang signifikan terhadap waktu pengikatan awal, waktu pengikatan akhir, dan kuat tekan. Penambahan 5% blast furnace slag dengan 92,5% clinker pada campuran clinker dan gypsum merupakan kondisi optimum yang memberikan pengaruh signifikan terhadap variabel respon.The production of clinker consumes high energy and causes high production cost of cement industry. It can be reduced by adding blast furnace slag as a mixture in cement production. The blast furnace slag - clinker mixture can produce cement with setting time and compressive strength according to SNI. The effect of the addition of blast furnace slag as a clinker mixture to the setting time and compressive strength of cement can be optimized by response surface methodology (RSM) using Central Composite Design (CCD). Optimization by using RSM aims to determine the optimum condition of the blast furnace slag – clinker mixture to the initial setting time, final setting time, and compressive strength. ANOVA test results and response surface analysis show that the addition of blast furnace slag into the cement mixture has a significant influence on the initial setting time, final setting time, and compressive strength. The addition of  5% blast furnace slag with  92.5% clinker in the mixture of clinker and gypsum is the optimum condition which gives a significant effect on the response variable.


2013 ◽  
Vol 12 (3) ◽  
pp. 215-222
Author(s):  
Katarzyna Synowiec

The paper presents the tests results of the properties of non - standard fly ash - slag cements composition. Both natural (unprocessed) and activated by grinding calcareous fly ash was used. It was found that the calcareous fly ash next to the granulated blast furnace slag may be a component of low - clinker cements (ca. 40%). Those cements are characterized by low heat of hydration and overdue of initial setting time in comparison with Ordinary Portland Cement, moreover they have an unfavorable effect on consistency and its upkeep in time. Production of fly ash - slag cements is possible for strength class 32,5 N when the component of cement is raw fly ash, and for strength classes 32,5 N, 32,5 R and 42,5 N when ground fly ash was used. Fly ash activated by grinding was characterized by higher activity.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5705
Author(s):  
Rubén Beltrán Cobos ◽  
Fabiano Tavares Pinto ◽  
Mercedes Sánchez Moreno

Crystalline admixtures are employed for waterproofing concrete. This type of admixtures can affect the early age performance of cement-based mixes. The electrical resistance properties of cement have been related to the initial setting time and to the hydration development. This paper proposes a system for remote monitoring of the initial setting time and the first days of the hardening of cement-based mortars to evaluate the effect of the incorporation of crystalline admixtures. The electrical resistance results have been confirmed by other characterization techniques such as thermogravimetric analysis and compressive strength measurements. From the electrical resistance monitoring it has been observed that the incorporation of crystalline admixtures causes a delay in the initial setting time and hydration processes. The measurements also allow to evaluate the influence of the amount of admixture used; thus, being very useful as a tool to define the optimum admixture dosage to be used.


2020 ◽  
Vol 1005 ◽  
pp. 76-81
Author(s):  
Ghawsaddin Nazari ◽  
Shunya Yamanaka ◽  
Shigeyuki Date

Usage of mineral admixture and chemical admixture in concrete or mortar is a usual solution to reach full compaction, particularly where reinforcement blockage and lack of skilled labor happen. In this paper effect of mineral admixtures (Carbon-free fly ash, hereafter CfFA, and normal fly ash) on fresh properties and rheology of mortar have been investigated. As a result, it was confirmed that CfFA increased significantly the fluidity and air content of mortar in comparison to normal fly ash, both in 15% and 30% replacement; however, the flow loss and air stability within one hour were almost equal. In addition, the initial setting time has also been affected by variation of materials. The two mixing of 30% and 15% of CfFA had a shorter setting time in comparison to the mortar with normal fly ash. Furthermore, CfFA based mortar had a great influence on rheology of mortar. Compared to normal fly ash, CfFA Considerably decreased the plastic Viscosity and increased the productivity of the mortar, both in non-vibrated and vibrated condition, particularly those with 30% replacement.


2014 ◽  
Vol 548-549 ◽  
pp. 12-15 ◽  
Author(s):  
Meng Jie Lu ◽  
Ming Fang Ba ◽  
Dan Yi Man ◽  
Si Yuan Ma ◽  
Jie Yang ◽  
...  

In order to save the costs of the rapid hardening and repair sulphoaluminate cement and improve its working performance, the effects of slag, fly ash, silica fume in different contents and different adding ways on the initial setting time and working performance of sulphoaluminate cement are studied. The results show that the initial setting time of single-doped slag and fly ash both meet the requirements of repair materials, but silica fume significantly cuts the cement’s initial setting time short, which does not meet the construction conditions for rapid hardening and repair. Ultimately it is determined that the mechanical properties of sulphoaluminate cement are the best when slag and fly ash are compound added by the content of 30% at 4:1 mass ratio and simultaneously the initial setting time meets the conditions for rapid hardening and repair.


Sign in / Sign up

Export Citation Format

Share Document