scholarly journals Synthesis, Characterization, In-Vitro and In-Vivo Evaluation of Ketorolac Tromethamine-Loaded Hydrogels of Glutamic Acid as Controlled Release Carrier

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3541
Author(s):  
Muhammad Suhail ◽  
Chuan-Ming Shih ◽  
Jia-Yu Liu ◽  
Wan-Chu Hsieh ◽  
Yu-Wen Lin ◽  
...  

Glutamic acid-co-poly(acrylic acid) (GAcPAAc) hydrogels were prepared by the free radical polymerization technique using glutamic acid (GA) as a polymer, acrylic acid (AAc) as a monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and ammonium persulfate (APS) as an initiator. Increase in gel fraction was observed with the increasing concentration of glutamic acid, acrylic acid, and ethylene glycol dimethylacrylate. High percent porosity was indicated by developed hydrogels with the increase in the concentration of glutamic acid and acrylic acid, while a decrease was seen with the increasing concentration of EGDMA, respectively. Maximum swelling and drug release was exhibited at high pH 7.4 compared to low pH 1.2 by the newly synthesized hydrogels. Similarly, both swelling and drug release increased with the increasing concentration of glutamic acid and acrylic acid and decreased with the increase in ethylene glycol dimethylacrylate concentration. The drug release was considered as non-Fickian transport and partially controlled by viscoelastic relaxation of hydrogel. In-vivo study revealed that the AUC0–∞ of fabricated hydrogels significantly increased compared to the drug solution and commercial product Keten. Hence, the results indicated that the developed hydrogels could be used as a suitable carrier for controlled drug delivery.

Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


2019 ◽  
Vol 9 (3) ◽  
pp. 248-263 ◽  
Author(s):  
Ashish K. Parashar ◽  
Preeti Patel ◽  
Arun K. Gupta ◽  
Neetesh K. Jain ◽  
Balak Das Kurmi

Background: The present study was aimed at developing and exploring the use of PEGylated Poly (propyleneimine) dendrimers for the delivery of an anti-diabetic drug, insulin. Methods: For this study, 4.0G PPI dendrimer was synthesized by successive Michael addition and exhaustive amidation reactions, using ethylenediamine as the core and acrylonitrile as the propagating agent. Two different activated PEG moieties were employed for PEGylation of PPI dendrimers. Various physicochemical and physiological parameters UV, IR, NMR, TEM, DSC, drug entrapment, drug release, hemolytic toxicity and blood glucose level studies of both PEGylated and non- PEGylated dendritic systems were determined and compared. Results: PEGylation of PPI dendrimers caused increased solubilization of insulin in the dendritic framework as well as in PEG layers, reduced drug release and hemolytic toxicity as well as increased therapeutic efficacy with reduced side effects of insulin. These systems were found to be suitable for sustained delivery of insulin by in vitro and blood glucose-level studies in albino rats, without producing any significant hematological disturbances. Conclusion: Thus, surface modification of PPI dendrimers with PEG molecules has been found to be a suitable approach to utilize it as a safe and effective nano-carrier for drug delivery.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Author(s):  
Mohini Sihare ◽  
Rajendra Chouksey

Aim: Nateglinide is a quick acting anti-diabetic medication whose potent activity lasts for a short duration. One of the dangerous side effects of nateglinide administration is rapid hypoglycemia, a condition that needs to be monitored carefully to prevent unnecessary fatalities. The aim of the study was to develop a longer lasting and slower releasing formulation of nateglinide that could be administered just once daily. Methods: Matrix tablets of nateglinide were prepared in combination with the polymers hydroxypropylmethylcellulose (HPMC), eudragits, ethyl cellulose and polyethylene oxide and the formulated drug release patterns were evaluated using in vitro and in vivo studies. Conclusion: Of the seventeen formulated matrix tablets tested, only one formulation labelled HA-2 that contained 15% HPMC K4M demonstrated release profile we had aimed for. Further, swelling studies and scanning electron microscopic analysis confirmed the drug release mechanism of HA-2. The optimized formulation HA-2 was found to be stable at accelerated storage conditions for 3 months with respect to drug content and physical appearance. Mathematical analysis of the release kinetics of HA-2 indicated a coupling of diffusion and erosion mechanisms. In-vitro release studies and pharmacokinetic in vivo studies of HA-2 in rabbits confirmed the sustained drug release profile we had aimed for. Keywords: Hydroxypropylmethylcellulose, Matrix tablets, Nateglinide, Sustained release


2009 ◽  
Vol 12 (1) ◽  
pp. 129 ◽  
Author(s):  
Zhihong Zhang ◽  
Bo Peng ◽  
Xinggang Yang ◽  
Chao Wang ◽  
Guangmei Sun ◽  
...  

PURPOSE. Find a novel delivery system for oral administration of drugs that have absorption window in the upper part of gastrointestinal (GI) track. METHODS. Dipyridamole was chosen as the model drug. A novel system, which combined the osmotic pump controlled release system and the floating system, was designed; matrix tablets (MT) were prepared for compares. The effects of pH, temperature and hydrodynamic conditions on drug release and the floating behavior of floating osmotic pump system (FOP) were investigated. In vivo evaluation was performed by a three-crossover study in six Beagle dogs relative to the conventional tablet (CT). Cumulative percent input in vivo was compared with that of in vitro release profiles. RESULTS. Floating behavior of FOP, drug releases from FOP and MT were sensitive to pH of dissolution media but not sensitive to temperature; the release of dipyridamole from MT was influenced by stirring rate while drug release from FOP was not. AUC of FOP was larger than MT and CT. The linear correlations between fraction absorbed in vivo and fraction dissolved in vitro was established for FOP-a true zero-order release formula, whereas only a nonlinear correlation was obtained for MT. CONCLUTIONS. FOP could be a novel way for the oral administration for drugs like dipyridamole.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Rajni Bala ◽  
Sushil Khanna ◽  
Pravin Pawar

Clobazam orally dissolving strips were prepared by solvent casting method. A full 32 factorial design was applied for optimization using different concentration of film forming polymer and disintegrating agent as independent variable and disintegration time, % cumulative drug release, and tensile strength as dependent variable. In addition the prepared films were also evaluated for surface pH, folding endurance, and content uniformity. The optimized film formulation showing the maximum in vitro drug release, satisfactory in vitro disintegration time, and tensile strength was selected for bioavailability study and compared with a reference marketed product (frisium5 tablets) in rabbits. Formulation (F6) was selected by the Design-expert software which exhibited DT (24 sec), TS (2.85 N/cm2), and in vitro drug release (96.6%). Statistical evaluation revealed no significant difference between the bioavailability parameters of the test film (F6) and the reference product. The mean ratio values (test/reference) of Cmax (95.87%), tmax (71.42%), AUC0−t (98.125%), and AUC0−∞ (99.213%) indicated that the two formulae exhibited comparable plasma level-time profiles.


2020 ◽  
Vol 11 (9) ◽  
pp. 557-571 ◽  
Author(s):  
Narendra ◽  
Abhishesh Kumar Mehata ◽  
Matte Kasi Viswanadh ◽  
Roshan Sonkar ◽  
Datta Maroti Pawde ◽  
...  

Aim: This work focused on the development of transferrin-conjugated theranostic liposomes consisting of docetaxel (DXL) and upconversion nanoparticles for the diagnosis and treatment of gliomas. Materials & methods: Upconversion nanoparticles and docetaxel-loaded theranostic liposomes were prepared by a solvent injection method. Formulations were analyzed for physicochemical properties, encapsulation efficiency, drug release, elemental analysis, cytotoxicity and fluorescence. Results: The particle size was around 200 nm with spherical morphology and an encapsulation efficiency of up to 75.93%, was achieved for liposomes with an in vitro drug release of 71.10%. The IC50 values demonstrated enhanced cytotoxicity on C6 glioma cells with targeted liposomes in comparison with nontargeted liposomes. Conclusion: Prepared theranostic liposomes may be promising for clinical validation after an in vitro and in vivo evaluation on cell lines and animals, respectively.


Sign in / Sign up

Export Citation Format

Share Document