scholarly journals Influence of the Graphene Filler Nature on the Morphology and Properties of Melt Blended EVOH Based Nanocomposites

Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3546
Author(s):  
Anthony Blanchard ◽  
Fabrice Gouanvé ◽  
Eliane Espuche

In this study, ethylene vinyl alcohol (EVOH) nanocomposites elaborated by melt blending with four different fillers were investigated. Two graphene and two graphite fillers displaying various shapes were selected. The morphology, microstructure, thermal, mechanical, and barrier properties of the nanocomposite films prepared for 2 wt% fillers were analyzed with the aim to establish structure–function properties relationships. The nanocomposites properties significantly depended on the nature of the incorporated filler. The nanocomposite film prepared with the expanded graphite filler exhibited the highest Young modulus value (E = 1430 MPa) and the best barrier properties. Indeed, barrier properties, rarely studied at high water activities, evidenced a significant improvement with a decrease of the water vapor permeability by a factor 1.8 and of the oxygen permeabilities by a factor close to 2, for a critical water activity higher than 0.95. An increase of the thermal stability was also evidenced for this nanocomposite. It was shown that for all studied nanocomposites, the properties could be related to the dispersion state of the fillers and the simultaneous increase of the crystallinity of the matrix. A specific equation was proposed to take into account these both parameters to accurately predict the nanocomposite barrier properties.

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 298 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Minghao Yi ◽  
Jianfang Ge ◽  
Guoqiang Yin ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing two types of nanoparticles, namely one-dimensional sodium montmorillonite (MMT) clay platelets (0.5, 1, 3, and 5 wt%) and three-dimensional TiO2 nanospheres (0.5, 1, 3, and 5 wt%), are prepared using solvent casting method. X-ray diffraction studies confirm the completely exfoliated structure of FK/PVA/Tris/MMT nanocomposites. The successful formation of new hydrogen bonds between the hydroxyl groups of the film matrix and the nanofillers is confirmed by Fourier transform infrared spectroscopy. The tensile strength, elongation at break, and initial degradation temperature of the films are enhanced after MMT and TiO2 incorporation. The water vapor permeability, oxygen permeability, and light transmittance decrease with increase in TiO2 and MMT contents. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris blend films in the packaging field.


2021 ◽  
Author(s):  
Ya-Yu Li ◽  
Yan-Ru Bai ◽  
Xin-Qian Zhang ◽  
Xin Liu ◽  
Zhen Dai ◽  
...  

Abstract Three kinds of cellulose nanocrystals (CNCs) were added into waterborne polyurethane (WPU), and nanocomposite films were prepared by solution casting method. The influence of different ionic function groups on microstructure and properties of composite films was investigated, and interaction mechanism between these two components was analyzed. Results show that thermal stability of these composite films are improved by 15℃. Compared with sulfated CNCs (SCNCs) and TEMPO oxidized CNCs (TOCNCs), FE-SEM results prove that cationized CNCs (CaCNCs) have better dispersion in composite films. In addition, fracture surface did not display large cavities, which indicates the interface binding force between WPU and CaCNCs is stronger. The tensile strength and fracture work of CaCNC/WPU composite film increase by 11.9% and by 8.4%, respectively. The oxygen permeability of CaCNC/WPU composite film is the lowest in these composite films, which is 5.00 cm3•cm (cm2•s•Pa)-1. Water vapor permeability of composite films may have a close positive correlation with their hygroscopicity. In all, composite film with CaCNCs has optimal strength, toughness, light transmittance and oxygen barrier properties. There may be opposite ion attraction superimposed hydrogen bond between CaCNCs and WPU in the composite film. The composite films are expected to have applications in food packaging, furniture coatings and biomedical applications.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 481
Author(s):  
Chen ◽  
Yi ◽  
Wu ◽  
Tan ◽  
Xu ◽  
...  

The novel phenylenedisilane, 1,4-bis(dimethoxyphenylsilyl)benzene (BDMPD), was successfully synthesized via the reaction between trimethoxyphenylsilane (TMPS) and a Grignard reagent originating from 1,4-dibromobenzene. In comparison to common Grignard reactions, this process was a facile one-pot method. 1H NMR spectroscopy, FT-IR measurements, and elemental analysis confirmed the predicted structure of BDMPD. In addition, vinyl-terminated polysiloxanes containing silphenylene units (VPSSP), which were hydrolytically copolymerized from BDMPD, TMPS, and divinyltetramethyldisiloxane, exhibited excellent thermal stabilities (T10%: 502 °C, Rw%: 76.86 beyond 700 °C) and suitable refractive indices (1.542). Furthermore, water contact angle and water vapor permeability tests confirmed that the fully cured siloxane resins containing VPSSP-based silphenylene units exhibited strong hydrophobicity (water contact angle: 119°) and superior water vapor barrier properties, thereby indicating their potential to serve as strong waterproof coatings for moisture-proof applications or as adhesives for use in immersed equipment.


2021 ◽  
Vol 1021 ◽  
pp. 280-289
Author(s):  
Abdulkader M. Alakrach ◽  
Awad A. Al-Rashdi ◽  
Mohamed Khalid Al-Omar ◽  
Taha M. Jassam ◽  
Sam Sung Ting ◽  
...  

In this study, PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films were fabricated via solution casting method. By testing the film density, solubility, water contact angle and water vapor permeability, the PLA nanocomposite films, the comprehensive performances of the nanocomposites were analysed. The outcomes demonstrated that maximum film density of PLA/TiO2 and PLA/HNTs-TiO2 nanocomposites films increased gradually with the increasing of nanofiller loadings. Moreover, the incorporation of TiO2 and HNTs-TiO2 significantly decreased the water vapor transmittance rate of the nanocomposite films with a slight priority to the addition of HNTs-TiO2, the water solubility was significantly improved with the addition of both nanofillers. Furthermore, the barrier properties were developed with the addition of both TiO2 and HNTs-TiO2 especially after the addition of low nanofiller loadings. Overall, the performance of the PLA/HNTs-TiO2 nanocomposite films was better than that PLA/TiO2 film. Nevertheless, both of the PLA nanocomposite samples achieved the requests of food packaging applications.


BioResources ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. 8029-8047
Author(s):  
Kassim M. Haafiz ◽  
Owolabi F. A. Taiwo ◽  
Nadhilah Razak ◽  
Hashim Rokiah ◽  
Hussin M. Hazwan ◽  
...  

A biocomposite was successfully prepared by blending montmorillonite (MMT)/hemicellulose from oil palm empty fruit bunches (OPEFB) with carboxymethyl cellulose (CMC) through solution casting. The composite was characterized by scanning electron microscopy (SEM), Fourier transmission infrared spectroscopy (FT-IR), and X-ray diffraction (XRD). The results displayed good compatibility between the mixtures of the blended MMT/hemicellulose and CMC due to the hydrogen bonding and electrostatic interaction. There was an improvement in the thermal analysis through their thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC), mechanical properties (tensile strength and tensile modulus),and water vapor permeability (WVP). The best values of tensile strength and tensile modulus of 47.5 MPa and 2.62 MPa, respectively, were obtained from 60H-40CMC-MMT nanocomposite films. The results showed that the mixture of the blended MMT/hemicelluloses and CMC produced a robust nanocomposite film with improved physical and mechanical properties, demonstrating that it is a promising candidate for green packaging applications.


e-Polymers ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 038-046
Author(s):  
Xu Yan ◽  
Wanru Zhou ◽  
Xiaojun Ma ◽  
Binqing Sun

Abstract In this study, a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) modified with nano-montmorillonite biocomposite (MMT/PHBH) was fabricated by solution-casting method. The results showed that the addition of MMT increased the crystallinity and the number of spherulites, which indicated that MMT was an effective nucleating agent for PHBH. The maximum decomposition peak of the biocomposites moved to a high temperature and residue presented an increasing trend. The biocomposites showed the best thermal stability at 1 wt% MMT. Compared with PHBH, 182.5% and 111.2% improvement in elastic modulus and tensile strength were obtained, respectively. Moreover, the oxygen permeability coefficient and the water vapor permeability of MMT/PHBH biocomposites decreased by 43.9% and 6.9%, respectively. It was also found that the simultaneous enhancements on the crystallizing, thermal stability, mechanical, and barrier properties of biocomposites were mainly caused by the formation of intercalated structure between PHBH and MMT.


Author(s):  
Viviane Machado Azevedo ◽  
Ana Carolina Salgado De Oliveira ◽  
Soraia Vilela Borges ◽  
Josiane Callegaro Raguzzoni ◽  
Marali Vilela Dias ◽  
...  

Abstract: Studies have been made to explore the utilization of pea proteins in terms of edible film and coating materials. The reinforcement of biopolymer films with plant-based nanocrystals has been applied in order to improve their performance properties. The objective was to evaluate the effect of the incorporation of corn starch nanocrystals (SN) (0-15%) in pea protein isolate films. Thermal analysis showed that the addition of up to 5% starch nanocrystals increased thermal stability. A 22.3% decrease was observed in water vapor permeability with the addition of SN. Increasing the SN concentration altered the arrangement of the structure to interleaved, in the matrix, as seen in transmission micrographs. This study showed that the use of corn starch nanocrystals as reinforcement in pea protein films had an effect on the films. The incorporation of up to 10% SN is suggested in order to increase the performance properties of pea protein isolate films.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 158
Author(s):  
Yao Dou ◽  
Liguang Zhang ◽  
Buning Zhang ◽  
Ming He ◽  
Weimei Shi ◽  
...  

The development of edible films based on the natural biopolymer feather keratin (FK) from poultry feathers is of great interest to food packaging. Edible dialdehyde carboxymethyl cellulose (DCMC) crosslinked FK films plasticized with glycerol were prepared by a casting method. The effect of DCMC crosslinking on the microstructure, light transmission, aggregate structure, tensile properties, water resistance and water vapor barrier were investigated. The results indicated the formation of both covalent and hydrogen bonding between FK and DCMC to form amorphous FK/DCMC films with good UV-barrier properties and transmittance. However, with increasing DCMC content, a decrease in tensile strength of the FK films indicated that plasticization, induced by hydrophilic properties of the DCMC, partly offset the crosslinking effect. Reduction in the moisture content, solubility and water vapor permeability indicated that DCMC crosslinking slightly reduced the moisture sensitivity of the FK films. Thus, DCMC crosslinking increased the potential viability of the FK films for food packaging applications, offering a value-added product.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Shufang Wu ◽  
Xunjun Chen ◽  
Tiehu Li ◽  
Yingde Cui ◽  
Minghao Yi ◽  
...  

In this study, feather keratin/polyvinyl alcohol/tris(hydroxymethyl)aminomethane (FK/PVA/Tris) bionanocomposite films containing graphene oxide (GO) (0.5, 1, 2, and 3 wt%) or graphene (0.5, 1, 2, and 3 wt%) were prepared using a solvent casting method. The scanning electron microscopy results indicated that the dispersion of GO throughout the film matrix was better than that of graphene. The successful formation of new hydrogen bonds between the film matrix and GO was confirmed through the use of Fourier-transform infrared spectroscopy. The tensile strength, elastic modulus, and initial degradation temperature of the films increased, whereas the total soluble mass, water vapor permeability, oxygen permeability, and light transmittance decreased following GO or graphene incorporation. In summary, nanoblending is an effective method to promote the application of FK/PVA/Tris-based blend films in the packaging field.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 618 ◽  
Author(s):  
Hynek Beneš ◽  
Jana Kredatusová ◽  
Jakub Peter ◽  
Sébastien Livi ◽  
Sonia Bujok ◽  
...  

Currently, highly demanded biodegradable or bio-sourced plastics exhibit inherent drawbacks due to their limited processability and end-use properties (barrier, mechanical, etc.). To overcome all of these shortcomings, the incorporation of lamellar inorganic particles, such as layered double hydroxides (LDH) seems to be appropriate. However, LDH delamination and homogenous dispersion in a polymer matrix without use of harmful solvents, remains a challenging issue, which explains why LDH-based polymer nanocomposites have not been scaled-up yet. In this work, LDH with intercalated ionic liquid (IL) anions were synthesized by a direct co-precipitation method in the presence of phosphonium IL and subsequently used as functional nanofillers for in-situ preparation of poly (butylene adipate-co-terephthalate) (PBAT) nanocomposites. The intercalated IL-anions promoted LDH swelling in monomers and LDH delamination during the course of in-situ polycondensation, which led to the production of PBAT/LDH nanocomposites with intercalated and exfoliated morphology containing well-dispersed LDH nanoplatelets. The prepared nanocomposite films showed improved water vapor permeability and mechanical properties and slightly increased crystallization degree and therefore can be considered excellent candidates for food packaging applications.


Sign in / Sign up

Export Citation Format

Share Document