scholarly journals Viscoelastic Property of an LDPE Melt in Triangular- and Trapezoidal-Loop Shear Experiment

Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3997
Author(s):  
Shuxin Huang

The time-dependent viscoelastic behaviors of a low-density polyethylene melt (LDPE) in a triangular- and trapezoidal-loop shear experiment reported previously are described here by an integral-type Rivlin–Sawyers (RS) constitutive equation. The linear viscoelasticity of the melt was obtained through a dynamic frequency sweep experiment at a small strain and fitted by a relaxation spectrum. The nonlinear viscoelasticity was characterized by viscosity. All the experimental viscoelastic behaviors of the melt can be divided into two types in terms of the predictions of the RS model: (1) predictable time-dependent viscoelastic behaviors at low shear rates or during short-term shear, and (2) unpredictable shear weakening behavior occurring at the high shear rate of 3–5 s−1 during long-term shear with the characteristic time interval of about 40–100 s. The influence of experimental error caused possibly by inhomogeneous samples on the viscoelasticity of the melt was analyzed, and the large relative error in the experiment is about 10–30%.

2007 ◽  
Vol 21 (28n29) ◽  
pp. 4945-4951 ◽  
Author(s):  
HOWARD SEE ◽  
CLINTON JOUNG ◽  
CHARLES EKWEBELAM

We have examined the small strain response of an inverse ferrofluid system, consisting of micron-sized inert particles dispersed in a ferrofluid, which is a magnetisable liquid consisting of single domain magnetite nanoparticles. Under a magnetic field the inert particles will form elongated aggregates in the field direction, analogous to a magnetorheological fluid. It was found that the fluid appeared to have a Bingham fluid-like yield stress when analysed using the flow curve. However careful study of the behavior at very low shear rates revealed an ever decreasing shear stress. In addition, the behavior of conventional magnetorheological fluids at large strains under steady shear flow and constant magnetic field was also studied, and the results compared to particle-level computer simulations.


Author(s):  
Syed Mubashirhussain ◽  
Venkaiah Chowdary

Rutting is one of the most significant distresses occurring in bituminous pavements at higher pavement temperatures. Researchers have been focusing on developing bitumen binder parameters that can be used to predict the rutting resistance of bituminous mixtures and Zero Shear Viscosity (ZSV) has proven its efficacy as a binder rutting parameter. A stepwise steady shear rate sweep test with two cycles of forward and backward sweeps was conducted at very low shear rates to determine the ZSV of unaged, short-term aged, and long-term aged unmodified bitumen binders. A convergence of the steady-state viscosities was observed at different shear rates in the first forward sweep. The response of the binders was independent of shear rate, time and the effect of shear history was negligible. As the shear rates correspond to the ZSV regime, ZSV was determined from the first forward sweep. The ZSV correlated well with the three existing rutting parameters.


1971 ◽  
Vol 10 (4) ◽  
pp. 607-607 ◽  
Author(s):  
M. Camina ◽  
C. G. Roffey

2011 ◽  
Vol 669 ◽  
pp. 498-526 ◽  
Author(s):  
PROSENJIT BAGCHI ◽  
R. MURTHY KALLURI

Three-dimensional numerical simulations are used to study the effect of unsteady swinging and tumbling motion on the rheology of a dilute suspension of oblate-shaped elastic capsules. Unlike a suspension of initially spherical capsules undergoing the steady tank-treading motion for which the rheology is constant in time, the suspension of non-spherical capsules is time-dependent due to the unsteady capsule motion. In a simple shear flow, the non-spherical capsules undergo a transition from the tank-treading/swinging to the tumbling motion with a reduction in the shear rate or an increase in the ratio of the internal to external fluid viscosities. We find that the time-averaged rheology obtained for the non-spherical capsules undergoing the unsteady motion is qualitatively similar to that obtained for the spherical capsules undergoing the steady tank-treading motion, and that the tank-treading-to-tumbling transition has only a marginal effect. The time-averaged rheology exhibits a shear viscosity minimum when the capsules are in a swinging motion at high shear rates but not at low shear rates. This is a remarkable departure from the behaviour of a vesicle suspension which exhibits a shear viscosity minimum at the point of transition. We find that the shear viscosity in a capsule suspension can decrease as well as increase with increasing viscosity ratio during both tank-treading and tumbling motions, while that of a vesicle suspension always decreases in tank-treading motion and increases in tumbling motion. We then seek to connect the time-dependent rheology with the time-dependent membrane tension, capsule orientation, deformation and tank-treading velocity. At low shear rates, the numerical results exhibit a similar trend to that predicted by analytical theory for rigid ellipsoids undergoing tumbling motion. The trend differs during swinging motion due to the periodic deformation and time-dependent variation of the membrane stress. The elastic component of the shear stress is minimum when the capsules are maximally compressed, and is maximum when the capsules are maximally elongated. In contrast, the viscous component is related to the periodic variation of the tank-treading velocity synchronized with the swinging motion, and the rate of capsule elongation or compression. The swinging or tumbling velocity makes no contribution to the time-dependent rheology.


2004 ◽  
Vol 261-263 ◽  
pp. 1097-1102 ◽  
Author(s):  
Jian Liu ◽  
Xia Ting Feng ◽  
Xiu Li Ding ◽  
Huo Ming Zhou

The time-dependent behavior of rock mass, which is generally governed by joints and shearing zones, is of great significance for engineering design and prediction of long-term deformation and stability. In situ creep test is a more effective method than laboratory test in characterizing the creep behavior of rock mass with joint or shearing zone due to the complexity of field conditions. A series of in situ creep tests on granite with joint at the shiplock area of the Three-Gorges Project and basalt with shearing zone at the right abutment of the Xiluodu Project were performed in this study. Based on the test results, the stress-displacement-time responses of the joints and basalt are analyzed, and their time-dependent constitutive model and model coefficients are given, which is crucial for the design to prevent the creep deformations of rock masses from causing the failure of the operation of the shiplock gate at the Three-Gorges Project and long-term stability of the Xiluodu arc dam.


2019 ◽  
Vol 9 (22) ◽  
pp. 4813 ◽  
Author(s):  
Hanbo Yang ◽  
Fei Zhao ◽  
Gedong Jiang ◽  
Zheng Sun ◽  
Xuesong Mei

Remaining useful life (RUL) prediction is a challenging research task in prognostics and receives extensive attention from academia to industry. This paper proposes a novel deep convolutional neural network (CNN) for RUL prediction. Unlike health indicator-based methods which require the long-term tracking of sensor data from the initial stage, the proposed network aims to utilize data from consecutive time samples at any time interval for RUL prediction. Additionally, a new kernel module for prognostics is designed where the kernels are selected automatically, which can further enhance the feature extraction ability of the network. The effectiveness of the proposed network is validated using the C-MAPSS dataset for aircraft engines provided by NASA. Compared with the state-of-the-art results on the same dataset, the prediction results demonstrate the superiority of the proposed network.


2019 ◽  
Vol 37 (3) ◽  
pp. 213-221 ◽  
Author(s):  
James J. Dignam ◽  
Daniel A. Hamstra ◽  
Herbert Lepor ◽  
David Grignon ◽  
Harmar Brereton ◽  
...  

Background In prostate cancer, end points that reliably portend prognosis and treatment benefit (surrogate end points) can accelerate therapy development. Although surrogate end point candidates have been evaluated in the context of radiotherapy and short-term androgen deprivation (AD), potential surrogates under long-term (24 month) AD, a proven therapy in high-risk localized disease, have not been investigated. Materials and Methods In the NRG/RTOG 9202 randomized trial (N = 1,520) of short-term AD (4 months) versus long-term AD (LTAD; 28 months), the time interval free of biochemical failure (IBF) was evaluated in relation to clinical end points of prostate cancer–specific survival (PCSS) and overall survival (OS). Survival modeling and landmark analysis methods were applied to evaluate LTAD benefit on IBF and clinical end points, association between IBF and clinical end points, and the mediating effect of IBF on LTAD clinical end point benefits. Results LTAD was superior to short-term AD for both biochemical failure (BF) and the clinical end points. Men remaining free of BF for 3 years had relative risk reductions of 39% for OS and 73% for PCSS. Accounting for 3-year IBF status reduced the LTAD OS benefit from 12% (hazard ratio [HR], 0.88; 95% CI, 0.79 to 0.98) to 6% (HR, 0.94; 95% CI, 0.83 to 1.07). For PCSS, the LTAD benefit was reduced from 30% (HR, 0.70; 95% CI, 0.52 to 0.82) to 6% (HR, 0.94; 95% CI, 0.72 to 1.22). Among men with BF, by 3 years, 50% of subsequent deaths were attributed to prostate cancer, compared with 19% among men free of BF through 3 years. Conclusion The IBF satisfied surrogacy criteria and identified the benefit of LTAD on disease-specific survival and OS. The IBF may serve as a valid end point in clinical trials and may also aid in risk monitoring after initial treatment.


2020 ◽  
Vol 47 (7) ◽  
pp. 856-864
Author(s):  
Guohui Cao ◽  
Wang Zhang ◽  
Jiaxing Hu ◽  
Xirong Peng

A long-term load test performed for 470 days on two two-span prestressed concrete (PC) continuous box girders is reported in this paper. Load types were selected as the test variates, and structural responses such as support reactions, deflections, and concrete strains were monitored. Simultaneously, affiliated experiments such as material strength, creep, and shrinkage tests were conducted to investigate the time-dependent performances of the materials. Data obtained from these tests showed that deflections, strains, and support reactions develop rapidly in the beginning and stabilize afterward; the reactions of mid- and end-supports decline and rise over time, respectively. Time-dependent patterns of deflections and support reactions were analyzed on the basis of an effective modulus method, and a practical calculation method for long-term deflections considering reaction redistributions was proposed. The effects of the service environment on the performance of PC girders were evaluated through an incremental analysis method.


1997 ◽  
Vol 78 (6) ◽  
pp. 3460-3464 ◽  
Author(s):  
Terry Crow ◽  
Vilma Siddiqi

Crow, Terry and Vilma Siddiqi. Time-dependent changes in excitability after one-trial conditioning of Hermissenda. J. Neurophysiol. 78: 3460–3464, 1997. The visual system of Hermissenda has been studied extensively as a site of cellular plasticity produced by classical conditioning. A one-trial conditioning procedure consisting of light paired with the application of serotonin (5-HT) to the exposed, but otherwise intact, nervous system produces suppression of phototactic behavior tested 24 h after conditioning. Short- and long-term enhancement (STE and LTE) of excitability in identified type B photoreceptors is a cellular correlate of one-trial conditioning. LTE can be expressed in the absence of STE suggesting that STE and LTE may be parallel processes. To examine the development of enhancement, we studied its time-dependent alterations after one-trial conditioning. Intracellular recordings from identified type B photoreceptors of independent groups collected at different times after conditioning revealed that enhanced excitability follows a biphasic pattern in its development. The analysis of spikes elicited by 2 and 30 s extrinsic current pulses at different levels of depolarization showed that enhancement reached a peak 3 h after conditioning. From its peak, excitability decreased toward baseline control levels 5–6 h after conditioning followed by an increase to a stable plateau at 16 to 24 h postconditioning. Excitability changes measured in cells from unpaired control groups showed maximal changes 1 h posttreatment that rapidly decremented within 2 h. The conditioned stimulus (CS) elicited significantly more spikes 24 h postconditioning for the conditioned group as compared with the unpaired control group. The analysis of the time-dependent development of enhancement may reveal the processes underlying different stages of memory for this associative experience.


2020 ◽  
Vol 8 (11) ◽  
pp. 871
Author(s):  
Masayuki Banno ◽  
Satoshi Nakamura ◽  
Taichi Kosako ◽  
Yasuyuki Nakagawa ◽  
Shin-ichi Yanagishima ◽  
...  

Long-term beach observation data for several decades are essential to validate beach morphodynamic models that are used to predict coastal responses to sea-level rise and wave climate changes. At the Hasaki coast, Japan, the beach profile has been measured for 34 years at a daily to weekly time interval. This beach morphological dataset is one of the longest and most high-frequency measurements of the beach morphological change worldwide. The profile data, with more than 6800 records, reflect short- to long-term beach morphological change, showing coastal dune development, foreshore morphological change and longshore bar movement. We investigated the temporal beach variability from the decadal and monthly variations in elevation. Extremely high waves and tidal anomalies from an extratropical cyclone caused a significant change in the long-term bar behavior and foreshore slope. The berm and bar variability were also affected by seasonal wave and water level variations. The variabilities identified here from the long-term observations contribute to our understanding of various coastal phenomena.


Sign in / Sign up

Export Citation Format

Share Document