scholarly journals Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4073
Author(s):  
Hadeia Mashaqbeh ◽  
Rana Obaidat ◽  
Nizar Al-Shar’i

Cyclodextrin polymers and cyclodextrin-based nanosponges have been widely investigated for increasing drug bioavailability. This study examined curcumin’s complexation stability and solubilization with β-cyclodextrin and β-cyclodextrin-based nanosponge. Nanosponges were prepared through the cross-linking of β-cyclodextrin with different molar ratios of diphenyl carbonate. Phase solubility experiments were conducted to evaluate the formed complexes and evaluate the potential of using β-cyclodextrin and nanosponge in pharmaceutical formulations. Furthermore, physicochemical characterizations of the prepared complexes included PXRD, FTIR, NMR, and DSC. In addition, in vitro release studies were performed for the prepared formulations. The formation of β-cyclodextrin complexes enhanced curcumin solubility up to 2.34-fold compared to the inherent solubility, compared to a 2.95-fold increment in curcumin solubility when loaded in β-cyclodextrin-based nanosponges. Interestingly, the stability constant for curcumin nanosponges was (4972.90 M−1), which was ten times higher than that for the β-cyclodextrin complex, where the value was 487.34 M−1. The study results indicated a decrease in the complexation efficiency and solubilization effect with the increased cross-linker amount. This study’s findings showed the potential of using cyclodextrin-based nanosponge and the importance of studying the effect of cross-linking density for the preparation of β-cyclodextrin-based nanosponges to be used for pharmaceutical formulations.

Author(s):  
Ihsan K. Jasim ◽  
Shaimaa N. Abd Alhammid ◽  
Alaa A. Abdulrasool

  CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl. 5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM and AFM showed crystalline and porous nature of the nanosponges. The in vitro drug release study of the selected formula 5-FUNS2 exhibited the fastest dissolution rate which is 56% in the first hr. Different molar ratios of (cyclodextrin to crosslinker) (CD: DPC) has a proficient effect on complexation efficiency (CE), apparent stability constant (Kst) and entrapment efficiency of 5-FU. 5-FUNS2 with (1:4) molar ratio showed the best result of CE, Kst and entrapment efficiency. 5-FUNS2 gave a higher release rate than the 5-FU-BCD inclusion complex and 5-FU solution. Surface morphology of the prepared nanosponges by SEM, AFM indicate that nanosized and highly porous nanosponges was obtained. The overall results suggest that cyclodextrin nanosponges could be a promising 5-FU delivery system utilizing the suitable formula.


2012 ◽  
Vol 512-515 ◽  
pp. 1821-1825
Author(s):  
Lin Zhang ◽  
Xue Min Cui ◽  
Qing Feng Zan ◽  
Li Min Dong ◽  
Chen Wang ◽  
...  

A novel microsphere scaffolds composed of chitosan and β-TCP containing vancomycin was designed and prepared. The β-TCP/chitosan composite microspheres were prepared by solid-in-water-in-oil (s/w/o) emulsion cross-linking method with or without pre-cross-linking process. The mode of vancomycin maintaining in the β-TCP/chitosan composite microspheres was detected by Fourier transform infrared spectroscopy (FTIR). The in vitro release curve of vancomycin in simulated body fluid (SBF) was estimated. The results revealed that the pre-cross-linking prepared microspheres possessed higher loading efficiency (LE) and encapsulation efficiency (EE) especially decreasing the previous burst mass of vancomycin in incipient release. These composite microspheres got excellent sphere and well surface roughness in morphology. Vancomycin was encapsulated in composite microspheres through absorption and cross-linking. While in-vitro release curves illustrated that vancomycin release depond on diffusing firstly and then on the degradation ratio later. The microspheres loading with vancomycin would be to restore bone defect, meanwhile to inhibit bacterium proliferation. These bioactive, degradable composite microspheres have potential applications in 3D tissue engineering of bone and other tissues in vitro and in vivo.


1970 ◽  
Vol 6 (1) ◽  
pp. 25-36 ◽  
Author(s):  
RP Patel ◽  
MM Patel

Several attempts have been made to improve the solubility of water insoluble drugs. Over the years, inclusion complexation of drugs with ?-cyclodextrin has emerged as a viable attempt to improve the dissolution of water insoluble drugs. The aim of the present work was to improve the dissolution rate of lovastatin, a water insoluble drug, by inclusion complexation with ?-cyclodextrin. The stoichiometric ratio determined by phase solubility analysis for inclusion complexation of lovastatin with ?-cyclodextrin was 1:1. The solubility of lovastatin increased with increasing amount of ?-cyclodextrin in water. Gibbs free energy (?Gtr°) values were all negative, indicating the spontaneous nature of lovastatin solubilization. Complexes of lovastatin were prepared with ?-cyclodextrin by various methods such as kneading, coevaporation and physical mixing. The complexes were characterized by Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) patterns. These studies indicated the inclusion of lovastatin in the cavity of ?-cyclodextrin. The complexation resulted in a marked improvement in the solubility of lovastatin. The complex prepared by kneading method showed fastest and highest in vitro dissolution rate compared to the tablets of pure of lovastatin. Physical mixture of ?-cyclodextrin/lovastatin also showed significant improvement in the dissolution rate compared to pure lovastatin. Mean dissolution time (MDT) of lovastatin decreased significantly after preparation of complexes and physical mixture of lovastatin with ?-cyclodextrin. Similarity factor (f2) indicated significant difference between the release profiles of lovastatin from complexes and from pure lovastatin. Key words: Lovastatin, ?-cyclodextrin, inclusion complexation, in vitro dissolution studies. Dhaka Univ. J. Pharm. Sci. 6(1): 25-36, 2007 (June) The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Drug Research ◽  
2017 ◽  
Vol 67 (11) ◽  
pp. 653-660 ◽  
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Dimitrios Spaneas ◽  
Dimitrios Lentzos ◽  
Polixeni Ladia ◽  
...  

AbstractThe aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of two new tuberculocidal adamantane aminoethers (compounds III and IV), congeneric to the adamantane derivative SQ109, which is in final clinical trials, and aminoethers (I) and (II), using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results suggest that both analogues, albeit more lipophilic than SQ109, and aminoethers (I) and (II), have the requisite in vitro release characteristics for oral administration. In conclusion, these formulations merit further assessment by conducting in vivo studies, at a later stage.


Drug Research ◽  
2017 ◽  
Vol 67 (08) ◽  
pp. 447-450 ◽  
Author(s):  
Marilena Vlachou ◽  
Angeliki Siamidi ◽  
Evanthia Diamantidi ◽  
Alexandra Iliopoulou ◽  
Ioannis Papanastasiou ◽  
...  

AbstractThe aim of the present investigation was to develop matrix tablet formulations for the in vitro controlled release of 2 new tuberculocidal adamantane aminoethers (compounds I and II), congeneric to the adamantane derivative SQ109, which is in final clinical trials, using carefully selected excipients, such as polyvinylpyrrolidone, sodium alginate and lactose. The tablets were prepared using the direct compression method and dissolution experiments were conducted using the US Pharmacopoeia type II apparatus (paddle method) in gastric and intestinal fluids. The results confirm that both analogues, albeit more lipophilic than SQ109, showed satisfactory in vitro release characteristics from solid pharmaceutical formulations. In conclusion, these formulations merit further assessment by conducting in the future bioavailability in vivo studies.


2021 ◽  
Vol 18 (4) ◽  
pp. 701-708
Author(s):  
Pham Thi Lan ◽  
Pham Long Khanh ◽  
Nguyen Thi Ngoan ◽  
Le Hai Khoa ◽  
Vu Xuan Minh ◽  
...  

The antioxidant capacity of polyphenols have been widely used in food and pharmaceutical industries. Quercetin (Quer) is a polyphenolic flavonoid that shows several biological effects such as antioxidant, antitumor, antibacterial and antiproliferative effects both in-vitro and in-vivo. However, the solubility of quercetin in water is poor. Thus, it is essential to improve solubility of quercetin in pharmaceuticals by making its complexation with other compounds. In this study, the synthesis of the 2-hydroxypropyl-β-cyclodextrin complex with quercetin (Quer-HPβCD) in the form of nanoparticles in water-ethanol solvents has been carried out. The results showed that the obtained yield of (Quer-HPβCD) complexation in binary solvent was greater than that in pure water. The highest Y value was 80% in a binary solvent with 20% v/v of ethanol. The composition, morphology, structural and thermodynamic properties of the nanoparticles Quer-HPβCD have been determined. This study demonstrated that using mixed water- ethanol solvent and lyophilization technique was able to produce quercetin nanoparticles with significantly smaller particle size. The nanoparticles have a spherical shape with an average size of about 40-60 nm. The results of the phase solubility diagram showed that in water the solubility of quercetin increased and linearly depended on the concentration of host’s molecule while Quer and HP-βCD obtained a 1:1 stoichiometric complex. The stability constant of (Quer-HPβCD) complex was found to be logK = 2.56. The Gibbs energy change of the complexation reaction was found to be -14.60 kJ/mol.


Author(s):  
RASHAD M. KAOUD ◽  
EMAN J. HEIKAL ◽  
TAHA M. HAMMADY

Objective: The study's main goal is to develop a suitable niosomes (NS) encapsulated drug for anti-inflammatory effects such as diacerein (DC) and to evaluate the system's vesicle size (VS), entrapment efficiency (EE %), physical stability and in vitro release. Methods: Tween (40 and 60), cholesterol, and stearylamine were used in a 1:1:0.1 molar ratios as non-ionic surfactants. Thin film hydration was used to create the NS. Results: The higher EE% was observed with NS (F11) prepared from tween 60, cholesterol and 2.5 min sonication. These formulations' release patterns were Higuchi diffusion and first order. For the stability study, NS formulations were stored at temperature between 2-8 °C for 60 d retains the most drugs when compared to room and high temperature conditions. Conclusion: The findings of this study have conclusively shown that after NS encapsulation of DC, drug release is prolonged at a constant and controlled rate.


Author(s):  
VENKATA RAMANA REDDY K. ◽  
NAGABHUSHANAM M. V. ◽  
PAMULA REDDY B. ◽  
RAVINDAR NAIK E.

Objective: The aim of the present work was to prepare and examine drug release of the oral controlled release microbeads using different curing agents by emulsification internal ionic gelation technique. Methods: Cross-linked alginate microbeads were prepared with different cross linking agents by using mucoadhesive properties. The formation and compatibility of microbeads were confirmed by compatibility studies. Prepared microbeads evaluated for encapsulated efficiency, micromeritic properties, drug loading, in vitro wash off studies, in vitro dissolution studies, drug release kinetics and stability studies Results: The in vitro drug release was influenced by both type of curing agents and type of polymers and no significant changes in characterization parameters was observed after 3 mo stability studies. The sustained release profile of optimized batch was found to be 99.66±0.18% in comparison to pure drug profile of 28.64±0.02% at 12 h release study. Results of both wash-off and in vitro studies suggests that batch (SF2) prepared with aluminium chloride has shown better mucoadhesive property. Drug release of optimized batch follows zero order with non fickian mechanism according to Korsmeyer-Peppas equation. Conclusion: The data suggest the use of simvastatin mucoadhesive cross linked microbeads to offer the potential for oral controlled drug delivery with improved gastric retention and capable to provide sustained drug release by using cross linking agents.


Author(s):  
Adel M Aly ◽  
Khaled M. Al-Akhali ◽  
Hesham Alrefaey ◽  
Mahmoud A. Shaker

Gliclazide (GZ) is practically insoluble in water and its bioavailability is limited by dissolution rate. The aim of the present study was to enhance the dissolution rate and bioavailability of GZ by complexation with hydroxypropyl (HP)-β-cyclodextrin (CD) applying three different methods; physical mixing, kneading technique and spray drying technique.  Also, to evaluate the dissolution rate and the hypoglycemic effect of the prepared complexes, in comparison with the GZ market product (Glizide tablets) in Saudi market. The produced complexes were characterized and evaluated using Differential Scanning Calorimetry (DSC), X-ray Diffractometry (XRD), Scanning Electron Microscope (SEM) and the in vitro release studies. All the methods of preparation of complexes were found to be effective in improving the solubility of gliclazide in comparison with the commercial product (Glizide tablets). The formation of inclusion complexes was evident in these formulations as shown by DSC and XRD studies. The inclusion complexes prepared by spray drying method in 1:1 molar ratios were the most effective method for improving the solubility of GZ. The in-vivo hypoglycemic effect of the complexed GZ-HP-β-CD prepared by spray drying significantly improved the biological performance and therapeutic efficacy of the drug compared to Glizide market product.  


2018 ◽  
Vol 10 (5) ◽  
pp. 66
Author(s):  
Ameerah A. Radhi

Objective: The objective of the present study was to formulate niosomal formulations of benazepril hydrochloride in an attempt to overcome the hurdles associated with itʼs poor oral absorption.Methods: Nine formulations were prepared with various ratios of sorbitan monostearate (span 60), sorbitan monopalmitate (span 40) and polyoxyethylene 2 stearyl ether (brij 72) as non-ionic surfactants, cholesterol as a stabilizing agent and soya lecithin as a charge imparting agent. Then, they were characterized for vesicle size, polydispersity (PDI), entrapment efficiency (EE %), release profile, zeta (ζ) potential and transmission electron microscopy (TEM).Results: Niosomal formulations exhibited an efficient entrapment range between (80.4-97.8) percent, vesicles size analyses revealed the formation of homogenously dispersed vesicles having a size range of (3.9±1.7-8.72±4.4) micrometers. The in vitro release studies revealed that all formulations displayed sustained release in comparison with the pure drug. Formulations prepared with span 60 and span 40 possessed adequate stability according to zeta potential analysis, whereas brij 72 failed the test and possessed inadequate zeta potential range. TEM images of the optimized formulations (F7 and F8) have confirmed the formation of vesicles with spherical shapes.Conclusion: Based on the study results, niosomal formulations seem to be attractive alternatives to conventional delivery for benazepril hydrochloride.


Sign in / Sign up

Export Citation Format

Share Document