scholarly journals Effect of Thermal Aging on Mechanical Properties and Color Difference of Glass Fiber/Polyetherimide (GF/PEI) Composites

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
You Song ◽  
Jiangang Deng ◽  
Zhuolin Xu ◽  
Yu Nie ◽  
Zhenbo Lan

This research study is aimed at evaluating the mechanical characteristics in terms of tensile strength and flexural strength of glass fiber reinforced Polyetherimide (GF/PEI) under different thermal aging. Tensile testing and bending testing were performed on the thermally aged polyetherimide composites. The mechanical properties of the thermally aged samples were also correlated with their color difference. The experimental results showed that both the tensile strength and flexural strength of the GF/PEI composite samples decreased with increasing aging temperature. However, the elastic modulus of the composite samples is nearly independent on the thermal aging. The thermally aged samples exhibited brittle fracture, resulting in low strength and low ductility. The loss in strength after thermal aging could be also linked to the change of their color difference, which can indirectly reflect the change of the strength for the composites after thermal aging.

2022 ◽  
Vol 58 (4) ◽  
pp. 28-36
Author(s):  
Velmurugan Natarajan ◽  
Ravi Samraj ◽  
Jayabalakrishnan Duraivelu ◽  
Prabhu Paulraj

This study aims to reveal the consequence of thickness reinforcement on Fiber Laminates (Polyester Resin, Glass Fiber, Aluminum, and Bentonite) and to see if it can enhance the mechanical properties and resistance of laminates. Glass fiber reinforced polymer composites have recently been used in automotive, aerospace, and structural applications where they will be safe for the application s unique shape. Hand layup was used to fabricate three different combinations, including Aluminium /Glass fiber reinforced polyester composites (A/GFRP), Bentonite/Glass fiber reinforced polyester composites (B/GFRP), and Aluminium&Bentonie/Glass fiber reinforced polyester composites (AB/GFRP). Results revealed that AB/GFRP had better tensile strength, flexural strength, and hardness than GFRP and A/GFRP. Under normal atmospheric conditions and after exposure to boiling water, hybrid Aluminium&Bentonite and glass fiber-reinforced nanocomposites have improved mechanical properties than other hybrid composites. After exposure to temperature, the flexural strength, tensile strength and stiffness of AB/GFRP Composites are 40 % higher than A/GFRP and 17.44% higher than B/GFRP Composites.


Author(s):  
Nguyen Trung Thanh

The tube is made of polymer composite material based on K-153 epoxy resin (K-153 epoxy resin is made from ED-20 epoxy resin modified by thiokol and oligomer acrylate), T-13 glassfiber, hardener polyethylenepolyaminemade by wrapping on machine. The effect of drying temperature on mechanical properties (tensile strength, flexural strength) of polymercomposite materialwas studied. The paper also mentions to select suitable hardener to beused for polymercomposite tube wrapping. The results show that the strength at break, flexural strength of polymercomposite material are changedmuch when changing wrapping angle. The drying temperature increases, the curing time of polymercomposite material is much reduced. The time to stabilize after drying also greatly affects the pressure resistance of polymer composite tubes. Keywords Polymercomposite, K-153, tensile strength, flexural strength, pressure resistance. References [1] M. J. Mochane, T. C. Mokhena, T. H. Mokhothu, Recent progress on natural fiber hybrid composites foradvanced applications: A review, eXPRESS Polymer Letters 13 (2) (2019) 159-198.[2] J. Kim, H. J. Yoon, K. Shin, A study on crushing behaviors of composite circular tubes with different reinforcing fibers, International Journal of Impact Engineering 38(4) (2014) 198-207.[3] T. D. Jagannatha1, G. Harish, Mechanical Properties of carbon/ glass fiber reinforced epoxy hybrid polymer composites, Journal of Reinforced Plastics and Composites 4 (2) (2015) 131–137.[4] Vitalii Bezgin, Agata Dudek, Composites based on high-molecular weigh epoxy resin modified with polysulfide rubber, Composite Theory and practice 17(2) (2017) 79-83. [5] Abdouss, Majid, Farajpour, Tohid, Derakhshani, Morteza, The Effect of Epoxy-Polysulfide Copolymer Curing Methods on Mechanical-Dynamical and Morphological Properties, Iran. J. Chem. Chem. Eng. 30(4) (2011) 37-44.[6] G. Devendhar Rao, K. Srinivasa Reddy, P. Raghavendra Rao, Mechanical properties of E-glass fiber reinforced epoxy composites with SnO2 and PTFE, International Journal of Emerging Research in Management and Technology 6 (7) (2017) 208-214.[7] Hu Dayong, Jialiang Yang, Experimental study on crushing characteristics of brittle fibre/epoxy hybrid composite tubes, International Journal of Crashworthiness 15(4) (2010) 401-412 .[8] G.U. Raju, S. Kumarappa, Experimental Study on Mechanicaland Thermal Properties of Epoxy Composites Filled with Agricultural Residue, Polymers from Renewable Resources 3 (3) (2012) 118–138.          


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 222
Author(s):  
Zhenbo Lan ◽  
Jiangang Deng ◽  
You Song ◽  
Zhuolin Xu ◽  
Yu Nie ◽  
...  

Thermal aging of polymer matrix composites exert significant influence on their properties and applications. This paper studied the color changes and mechanical properties of glass fiber reinforced polycarbonate (GF-PC) composites after aging at different temperatures, and the correlation between the trend of color changes and mechanical properties after aging was discussed. The GF-PC composites were aged at 85 °C, 100 °C, 115 °C, 130 °C and 145 °C, respectively. Thereafter, CIELAB colors were used to characterize the color changes of the composites after aging. Tensile and three-point bending tests were carried out to determine the mechanical properties of the composites. According to the values of CIELAB color, the color changes and the color difference (ΔE) of the GF-PC composites after aging were calculated, which showed that color of the GF-PC composite aged at 100 °C changed the most. The color changes of the composites after aging mainly comes from the change of brightness (L value), which was 25.067 for the Raw GF-PC composite. When the aging temperature increased from 85 °C to 100 °C, the brightness of the composites also increased, but decreased when the aging temperature is above 100 °C and continues to rise. Coincidentally, the trend of the mechanical properties of GF-PC composites is closely associated with color changes in the aging temperature range of 85 °C to 145 °C. The tensile and flexural strength of the composites reached the maximum value 72 MPa and 131 MPa, respectively, after aged at 100 °C. It can be speculated that the brightness of the GF-PC composites correlates with trends observed in its tensile strength and bending strength.


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2020 ◽  
Vol 978 ◽  
pp. 277-283
Author(s):  
Kishore Kumar Mahato ◽  
Krishna Chaitanya Nuli ◽  
Krishna Dutta ◽  
Rajesh Kumar Prusty ◽  
Bankim Chandra Ray

Fiber reinforced polymeric (FRP) composite materials are currently used in numerous structural and materials related applications. But, during their in-service period these composites were exposed to different changing environmental conditions. Present investigation is planned to explore the effect of thermal shock exposure on the mechanical properties of nanoTiO2 enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were conditioned at +70°C temperature for 36 h followed by further conditioning at – 60°C temperature for the similar interval of time. In order to estimate the thermal shock influence on the mechanical properties, tensile tests of the conditioned samples were carried out at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with different nanoTiO2 content (i.e. 0.1, 0.3 and 0.5 wt. %). The tensile strength of 0.1 wt.% nanoTiO2 GFRP filled composites exhibited higher ultimate tensile strength (UTS) among all other composites. The possible reason may be attributed to the good dispersion of nanoparticles in polymer matrix corresponds to proper stress transfer during thermal shock conditioning. In order to access the variations in the viscoelastic behavior and glass transition temperature due to the addition of nanoTiO2 in GFRP composite and also due to the thermal shock conditioning, dynamic mechanical thermal analysis (DMTA) measurements were carried out. Different modes of failures and strengthening morphology in the composites were analyzed under scanning electron microscope (SEM).


2020 ◽  
Vol 8 (5) ◽  
pp. 3916-3919

Conventional concrete i.e. the concrete generally has low tensile strength with limited ductility and low resistance towards cracking. The micro cracks that are developed internally are inherent among concrete and can be explained with the help of propagation of that micro cracks due to its inferior tensile strength. Different fibers, added at a certain percentage of concrete known to improve the deformation properties of concrete along with the plasticity against crack resistance, such as flexural strength. Mainly concrete & ferroconcrete research has been moved to steel fibers, and glass fibers have recently become more available, with no corrosion problems associated with glass fibers. This article describes an experimental study of the usage of glass fibers in the structural concrete. High-dispersion CEM-FILL fiberglass of 14 μm diameter with an aspect ratio of 857 was used at a dosage of 0.33% to 1% by weight in concrete and its mechanical properties such as compressive strength, flexural strength and modulus of elasticity.


2020 ◽  
Vol 852 ◽  
pp. 199-208
Author(s):  
Yan Li Chen ◽  
Satoshk Ueharo

Glass fiber reinforced cement (GRC) is a new type of composite material formed by using alkali-resistant glass fiber as a reinforcing material and cement paste or cement mortar as a matrix. GRC is widely used in construction engineering. However, the durability of GRC is still a major problem in engineering applications, especially GRC materials have been in the hot and humid building engineering environment for a long time. The alkaline environment of the cement matrix will cause serious erosion of the glass fiber, and Will significantly reduce the mechanical properties such as flexural strength and toughness of GRC. In this paper, ordinary Portland cement is mixed with active mineral admixtures such as fly ash and silica fume to reduce the alkaline environment of GRC matrix, and to delay the erosion rate of glass fiber and increase the flexural strength and compressive strength of GRC; At the same time, the effects of different hot and humid building engineering environments on the mechanical properties of GRC were studied.


2011 ◽  
Vol 299-300 ◽  
pp. 460-465 ◽  
Author(s):  
Li Zhang ◽  
Xiu Ping Dong ◽  
Hao Chen

By designing different formulations of composites and adopting optimized technology including extrusion and molding, the different composites with various content microcapsules were prepared. The results of the tensile tests show that with the increasing content of self-healing microcapsules in the glass fiber reinforced nylon composites, the mechanical properties of the composites will change, i.e. tensile strength, elastic modulus will decrease. But there is little effect on the mechanical properties of the composite gears if the content of self-healing microcapsules is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


2015 ◽  
Vol 766-767 ◽  
pp. 110-115 ◽  
Author(s):  
A. Shadrach Jeya Sekaran ◽  
K. Palanikumar ◽  
Pitchandi Kasivisvanathan ◽  
L. Karunamoorthy

Tensile, flexural and impact strength are considered as main criteria to determine the mechanical properties of any materials. These properties were determined for woven banana and glass fiber, reinforced epoxy composites. The hand-lay method of fabrication was employed in preparing the composites. Natural fibers offer both cost savings and reduction in density as well as environmental friendly when compare to glass fibers. As if the strength of natural fibers is not as remarkable as glass, fibers its specific properties are comparable.


2022 ◽  
Vol 23 (1) ◽  
pp. 329-338
Author(s):  
Gerges Naguib

Mechanical properties of polyester/glass fiber reinforced by multiwalled carbon nanotubes (MWCNTs) were studied. MWCNTs nano particles are mixed within resin in various weight fractions of 0.1, 0.2, 0.4 and 0.6 % using sonication. E-Glass fiber (chopped strand mat) is used in various weight fractions within the composite like 80/20 wt%, 70/30 wt%, 50/50 wt% to fabricate polyester/CSM/MWCNTs composites. The effect of the addition of MWCNTs nanoparticles on the mechanical characteristics such as hardness and tensile strength were investigated. The effect of various E-glass fiber chopped strand mat (CSM) wt.% reinforcement is also investigated. A scanning electron microscope (SEM) was used to show the nanocomposites morphological properties such as reinforcement orientation and the bonding between matrix and fiber. It was found that the addition of 0.4 wt% MWCNTs improves the mechanical properties of composites, especially the 50 wt% polyester / 50 wt% CSM composite. The tensile strength improved by 39.8%, and the hardness improved by 38%. ABSTRAK: Ciri-ciri mekanikal bagi poliester / gelas fiber diperkukuh dengan dinding berbilang karbon nanotiub (MWCNTs) dikaji. Partikel nano MWCNT telah dicampur ke dalam resin pelbagai berat pada pecahan 0.1, 0.2, 0.4 dan 0.6 % menggunakan sonikasi. Gentian Kaca-E (potongan lembaran) telah digunakan dalam pelbagai pecahan berat dalam komposit 80/20 wt%, 70/30 wt%, 50/50 wt% bagi menghasilkan komposit poliester/CSM/MWCNT. Kesan penambahan nanopartikel MWCNT pada ciri-ciri mekanikal seperti kekerasan dan kekuatan tensil diuji. Kesan pelbagai gentian Kaca-E (potongan lembaran) (CSM) wt.% bersama agen pengukuh turut dikaji. Pengimbas Mikroskop Elektron (SEM) digunakan bagi menilai ciri-ciri morfologi komposit nano seperti orientasi pengukuh dan ikatan antara matrik dan gentian. Dapatan kajian menunjukkan dengan penambahan sebanyak 0.4 wt% MWCNT dapat memperbaiki ciri-ciri mekanikal komposit terutama komposit campuran (50 wt% polyester / 50 wt% CSM). Ketahanan tensil meningkat sebanyak 39.8%, dan kekerasan telah bertambah sebanyak 38%.


Sign in / Sign up

Export Citation Format

Share Document