scholarly journals Recovering Cobalt and Sulfur in Low Grade Cobalt-Bearing V–Ti Magnetite Tailings Using Flotation Process

Processes ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 536 ◽  
Author(s):  
Xiao ◽  
Zhang

There is 0.032% cobalt and 0.56% sulfur in the cobalt-bearing V–Ti tailings in the Panxi Region, with the metal sulfide minerals mainly including FeS2, Fe1−xS, Co3S4, and (Fe,Co)S2, and the gangue minerals mainly including aluminosilicate minerals. The flotation process was used to recover cobalt and sulfur in the cobalt-bearing V–Ti tailings. The results showed that an optimized cobalt–sulfur concentrate with a cobalt grade of 2.08%, sulfur content of 36.12%, sulfur recovery of 85.79%, and cobalt recovery and 84.77% were obtained by flotation process of one roughing, three sweeping, and three cleaning under roughing conditions, which employed pulp pH of 8, grinding fineness of < 0.074 mm occupying 80%, flotation concentration of 30%, and dosages of butyl xanthate, copper sulfate, and pine oil of 100 g/t, 30 g/t, and 20 g/t, respectively. Optimized one sweeping, two sweeping, and three sweeping conditions used a pulp pH of 9, and dosages of butyl xanthate, copper sulfate, and pine oil of 50 g/t, 15 g/t, 10 g/t; 25 g/t, 7.5 g/t, 5 g/t; 20 g/t, 5 g/t, 5 g/t, respectively. Optimized one cleaning, two cleaning, and three cleaning condition dosages of sodium silicate of 200 g/t, 100 g/t, 50 g/t, respectively. Study of analysis and characterization of cobalt–sulfur concentrate by X-ray diffraction (XRD), automatic mineral analyzer (MLA), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) showed that the main minerals in cobalt–sulfur concentrate are FeS2, Co3S4 and (Fe,Co)S2, of which FeS2 and (Fe,Co)S2 accounted for 65.64% and Co3S4 for 22.64%. Gangue minerals accounted for 11.72%. The element Co in (Fe,Co)S2 is closely related to pyrite in the form of isomorphism, and the flotability difference between cobalt and pyrite is very small, which makes it difficult to separate cobalt and sulfur. Cobalt–sulfur concentrate can be used as raw material for further separation of cobalt and sulfur in smelting by pyrometallurgical or hydrometallurgical methods.

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 874 ◽  
Author(s):  
Junhui Xiao ◽  
Chao Chen ◽  
Wei Ding ◽  
Yang Peng ◽  
Tao Chen ◽  
...  

In this study, there is 1.42% P2O5 in the P-containing V-Ti magnetite tailings in Miyi Region of China, with the valuable minerals mainly including apatite, and aluminosilicate minerals as the main gangue components. The direction flotation process was used to recover phosphorous from the low-grade phosphorous-bearing V-Ti magnetite tailings. The results showed that an optimized phosphorous concentrate with a P2O5 grade of 31.35% and P2O5 recovery of 88.02% was obtained by flotation process of one roughing, three scavengings, and three cleanings under roughing conditions, which employed pulp pH of 9, grinding fineness of <0.039 mm occupying 90%, flotation concentration of 25%, and dosages of carboxymethylcellulose, oxidized paraffin wax soap, and pine oil of 400 g/t, 300 g/t, and 20 g/t, respectively. Optimized one scavenging, two scavenging, and three scavenging conditions used a pulp pH of 9, and dosages of carboxymethylcellulose, oxidized paraffin wax soap, and pine oil of 200 g/t, 150 g/t, 10 g/t; 100 g/t, 75 g/t, and 5 g/t; and 100 g/t, 75 g/t, and 5 g/t, respectively. Optimized one cleaning, two cleaning, and three cleaning condition dosages of carboxymethylcellulose of 100 g/t, 50 g/t, and 25 g/t, respectively. Study of analysis and characterization of phosphorous concentrate by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) show that most gangue minerals enter the flotation tailings, the main minerals in phosphorous concentrate are apatite, olivine, and feldspar.


2021 ◽  
Vol 13 (2) ◽  
pp. 161-169
Author(s):  
Tatyana ALEXANDROVA ◽  
◽  
Anastasia AFANASOVA ◽  
Nadezhda NIKOLAEVA ◽  
◽  
...  

There is a worldwide trend of increasing the share of extraction and processing of low-grade minerals, but their extraction and processing volumes are still low. There are several reasons for this: high mining and transportation costs, imperfect techniques and technological difficulties in enrichment and processing of refractory and low-quality minerals. Due to the depletion of reserves of easily beneficiated raw materials and to compensate for the growing shortage of high-quality minerals, the Russian mining industry development strategy provides for the involvement of new and unconventional types of deposits into production. Examples of such deposits are deposits of carbonaceous raw materials (black shale, refractory sulphide carbon-bearing ores, impactites, etc.) containing carbon of varying degrees of metamorphism. On the basis of the most modern mineralogical, physical, nuclear and chemical methods of research of composition, structure and properties of the carbonaceous raw materials at the micro- and nanolevel, the composition of the productive mineral matter, physical, chemical and thermodynamic laws of separation of valuable mineral components and the basic technological processes to obtain the finished product for valorization of the unconventional carbonaceous mineral raw materials were determined with maximum reliability. One of the possible reasons of difficulty of beneficiation of carbonaceous raw materials is the fine phenocrysts in graphite which can be solved by using the flotation process. Contrast of surface properties of minerals with similar technological properties can be increased by application of different energy effects (MEMI, MIO, microwave, electrochemical treatment etc.) at successive stages of raw material transformation, regulation of pulp conditioning conditions (duration and intensity of agitation, heat treatment of pulp) as well as by development and application of selective reagent regimes. The special feature of flotation as a method of extraction of noble and rare metals is the ability to extract valuable metals not only in their native free form, but also in close association with sulphides and carbon. Flotation with the use of intensifying influences made it possible to transfereven low-sized structures of noble and rare metals, which are not extracted by conventional methods of cyanidation, gravitation enrichment and amalgamation, into the concentrate. One of the ways to increase the efficiency of the flotation process is preliminary modification of the additive which is introduced in addition to the main reagents of the sinter - “carrier material”.


2019 ◽  
Vol 136 ◽  
pp. 02008
Author(s):  
Xinfang Zhang ◽  
Qinqin Wang ◽  
Chengdong Wang ◽  
Lang Zhu ◽  
Shujie Shi ◽  
...  

Mineralogy and separation experiments were carried out for a low-grade linnaeite ore (0.052%), which belonged to limonite-hematite-pyrite type complex mineral. Under the grinding fineness of 80% -0.074 mm, linnaeite concentrate which contained cobalt grade of 0.51%, recovery rate of 80.99%, sulfur grade of 23.79%, recovery of 88.03% was obtained by closed-circuit processes of one roughing, two scaenging and one cleaning, which used sulfate acid (4500 g/t) and copper sulfate (300 g/t) as activator, so-dium silicate (1000 g/t) and CMC (30 g/t) as inhibitor, ethyl xanthate(100 g/t)and butyl xanthate (100 g/t) as collector, 2# oil (40 g/t) as forther in roughing, no agent in cleaing and first scavenging, used ethyl xan-thate(50 g/t)and butyl xanthate (50 g/t) as collector, 2# oil (20 g/t) as forther in second scavenging.


2012 ◽  
Vol 616-618 ◽  
pp. 643-648
Author(s):  
Yong Cheng Zhou ◽  
Xiong Tong ◽  
Xiao Wang ◽  
Zheng Bin Deng ◽  
Xian Xie ◽  
...  

With the continuous depletion of primary tin ores, tin tailings has become an important source for the production of tin; however, the large-scale utilization of tin tailings is disappointedly scarce, due to its leanness in valuable minerals and insufficient methods available for processing such low-grade tailings. A flotation process has been used on a laboratory scale to investigate the effects of various reagents such as salicylhydroxamic acid, lead nitrate, sodium hexametaphosphate and pine oil on tin recovery at neutral pulp. Because cassiterite is friable and a large amount of fines and slimes were generated, usually de-sliming is used to prevent slime coating and to increase the recovery of tin. However, analyses have shown that fine particles in the sample mostly contain tin, thus de-sliming was not suggested. By applying the process, ultrafine cassiterite could be efficiently recovered from the slime tailings, and the concentrate assaying 1.82% Sn with a recovery of 76.90% was obtained.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 253 ◽  
Author(s):  
Ruan ◽  
He ◽  
Chi

Phosphate ore is an important raw material for manufacturing fertilizers and phosphorous chemical products. While most of the phosphate resources cannot be directly treated as feed stock due to the low grade of P2O5 and high content of impurities. In order to obtain a qualified phosphate concentrate, the beneficiation of the low-grade phosphate ore is, hence, of great necessity. Many beneficiation techniques can be employed to upgrade the P2O5 grade of phosphate ores based on their characteristics in chemical composition and texture. The flotation process is most widely applied to balance the P2O5 recovery ratio and cost. In this review, the dominant techniques for the beneficiation of phosphate ores are introduced. Moreover, the factors that affect the flotation of phosphate ore, including the properties of mineralogy, flotation reagents (depressants and collectors) and flotation medium, were systematically analyzed.


2015 ◽  
Vol 1089 ◽  
pp. 80-88
Author(s):  
Jun Hui Zhang ◽  
Yuan Zhang ◽  
Yong Tao Yang

The study on potential-controlled flotation test of differential flotation process was carried out in the light of the change of a certain ore properties. The test used self-developed EMZ-91, as well as conventional collectors of ethyl thio carbamate and butyl xanthate for the flotation of copper, lead and zinc ores respectively, in which the copper sulfate was used as the activator of zinc mineral. The new differential flotation process, which is using lime to regulate pulp potential, produced the copper concentrate grading 27.18% copper at 73.37% recovery, the lead concentrate grading 66.00% lead at 63.00% recovery, and the zinc concentrate grading 55.27% zinc at 87.69% recovery.


2020 ◽  
Vol 07 ◽  
Author(s):  
Li Qiannan ◽  
Ling Yeqing ◽  
Zheng Hewen ◽  
Yang Zhi

: Manganese ore is an important metallurgical raw material that holds an important strategic position in the national economy of China. However, the grade of manganese ore in the country is mostly low, and the utilization efficiency of lowgrade manganese ore resources is low, which seriously restrict the healthy and stable development of China’s metallurgical industry. As a new green heating method, microwave is expected to address the problems of conventional methods and realize the effective utilization of low-grade manganese ore. In this paper, the research status of the microwave composite reduction of pyrolusite in recent years is reviewed. Microwave plays an important role in metallurgy, and it is the current direction pursued to improve the research intensity of microwave heating and extend it to actual industrial processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdolrahim Foroutan ◽  
Majid Abbas Zadeh Haji Abadi ◽  
Yaser Kianinia ◽  
Mahdi Ghadiri

AbstractCollector type and pulp pH play an important role in the lead–zinc ore flotation process. In the current study, the effect of pulp pH and the collector type parameters on the galena and sphalerite flotation from a complex lead–zinc–iron ore was investigated. The ethyl xanthate and Aero 3418 collectors were used for lead flotation and Aero 3477 and amyl xanthate for zinc flotation. It was found that maximum lead grade could be achieved by using Aero 3418 as collector at pH 8. Also, iron and zinc recoveries and grades were increased in the lead concentrate at lower pH which caused zinc recovery reduction in the zinc concentrate and decrease the lead grade concentrate. Furthermore, the results showed that the maximum zinc grade and recovery of 42.9% and 76.7% were achieved at pH 6 in the presence of Aero 3477 as collector. For both collectors at pH 5, Zinc recovery was increased around 2–3%; however, the iron recovery was also increased at this pH which reduced the zinc concentrate quality. Finally, pH 8 and pH 6 were selected as optimum pH values for lead and zinc flotation circuits, respectively.


2013 ◽  
Vol 303-306 ◽  
pp. 2473-2476
Author(s):  
Wei Zhi Wang ◽  
Li Hui Zhou ◽  
Chun Guang Yang

The mineral processing experimental research was carried out on the hematite bearing characteristics of low grade, fine grain,complex composition. The results showed that using the technological flowsheet of “stage grinding- low intensity magnetic separation”, the iron concentrate with recovery of 36.56% and grade of 65.85% Fe can be obtained. And the iron concentrate with recovery of 17.23% and grade of 63.53% Fe can be obtained by “stage grinding-HIMS process-reverse flotation” process. The final iron concentrate with TFe grade of 65.10%,yield of 19.19% and total iron recovery of 53.79% from the raw ores with TFe grade of 23.41% was obtained, with the first stage grinding size being 55% -0.074mm and the second stage,93% -0.074mm.


2009 ◽  
Vol 63 (1) ◽  
pp. 61-66
Author(s):  
Aleksandar Petkovic ◽  
Sonja Petkovic ◽  
Srdjana Magdalinovic

The investigations of used lime at plant from company Messer-Tehnogas, Belgrade, were in the aim to improvement technologically results from flotation concentration of copper minerals in flotation plant Veliki Krivelj. This paper shows usage of slaked lime, which is waste in the process of technical gas production, for regulation of pH value in the process of copper minerals flotation concentration. It is important to point out that slaked lime is a waste material that is not dangerous. Preparation and dosage includes preparation procedures, which enable introduction into flotation process with the aim of achieving better results. Lime from Limekiln Zagradje is brought into four storage places in flotation. Volume of each storage place is 80 m3. Lime in pieces from storage place is added by airbladders on transportation line and by system of transportation lines lime gets to the ball mill. At the mill entrance water is added and then follows lime grinding. Milk glass of lime thus prepared goes to the pump basket from where is transported by pipeline to conditioner, and then by manual and (or) automatic valves it is dosed to the flotation concentration of copper minerals process. Prospect of advancement and rationalization of the used lime in flotation plant Bor, Veliki Krivelj and Majdanpek as well as a way to link different branches of industry was demonstrated. Total cost of lime supplying, transporting, preparation and distribution related slaked lime is lower for 2.955 din/kg. Particularly, using lime from Messer in content of 2.1 g/l value of pH 11.82 is possible to obtain.


Sign in / Sign up

Export Citation Format

Share Document