scholarly journals Metabolite Profiling of Aquilaria malaccensis Leaf Extract Using Liquid Chromatography-Q-TOF-Mass Spectrometry and Investigation of Its Potential Antilipoxygenase Activity In-Vitro

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 202 ◽  
Author(s):  
Manar A. Eissa ◽  
Yumi Z. H-Y. Hashim ◽  
Dina M. El-Kersh ◽  
Saripah S. S. Abd-Azziz ◽  
Hamzah Mohd. Salleh ◽  
...  

The Aquilaria malaccensis species of the genus Aquilaria is an abundant source of agarwood resin and many bioactive phytochemicals. Recent data regarding the chemical constituents and biological activities of Aquilaria leaves led us to attempt to qualitatively profile the metabolites of Aquilaria malaccensis leaves from a healthy, noninoculated tree through phytochemical screening, GC-MS, and LC/Q-TOF-MS. The present work is also the first to report the antilipoxygenase activity of A. malaccensis leaves from healthy noninoculated tree and investigate its toxicity on oral mucosal cells. A total of 53 compounds were tentatively identified in the extract, some of which have been described in literature as exhibiting anti-inflammatory activity. A number of compounds were identified for the first time in the extract of A. malaccensis leaf, including quercetin, quercetin-O-hexoside, kaempferol-O-dirhamnoside, isorhamnetin-O-hexoside, syringetin-O-hexoside, myricetin, tetrahydroxyflavanone, hesperetin, sissotrin, and lupeol. The antilipoxygenase assay was used to determine the lipoxygenase (LOX) inhibitory potential of the extract, while a WST-1 assay was conducted to investigate the effect of the extract on oral epithelial cells (OEC). The extract implied moderate anti-LOX activity with IC50 value of 71.6 µg/mL. Meanwhile, the cell viability of OEC ranged between 92.55% (10 µg/mL)–76.06% ± (100 µg/mL) upon treatment, indicating some potential toxicity risks. The results attained encourage future studies of the isolation of bioactive compounds from Aquilaria malaccensis leaves, as well as further investigation on the anti-inflammatory mechanisms and toxicity associated with their use.

2020 ◽  
Vol 21 (10) ◽  
pp. 927-938 ◽  
Author(s):  
Roktim Gogoi ◽  
Rikraj Loying ◽  
Neelav Sarma ◽  
Twahira Begum ◽  
Sudin K. Pandey ◽  
...  

Background: The essential oil of methyl eugenol rich Cymbopogon khasianus Hack. was evaluated and its bioactivities were compared with pure methyl eugenol. So far, methyl eugenol rich essential oil of lemongrass was not studied for any biological activities; hence, the present study was conducted. Objective: This study examined the chemical composition of essential oil of methyl eugenol rich Cymbopogon khasianus Hack., and evaluated its antioxidant, anti-inflammatory, antimicrobial, and herbicidal properties and genotoxicity, which were compared with pure compound, methyl eugenol. Material and Methods: Methyl eugenol rich variety of Cymbopogon khasianus Hack., with registration no. INGR18037 (c.v. Jor Lab L-9) was collected from experimental farm CSIR-NEIST, Jorhat, Assam (26.7378°N, 94.1570°E). The essential oil wasobtained by hydro-distillation using a Clevenger apparatus. The chemical composition of the essential oil was evaluated using GC/MS analysis and its antioxidant (DPPH assay, reducing power assay), anti-inflammatory (Egg albumin denaturation assay), and antimicrobial (Disc diffusion assay, MIC) properties, seed germination effect and genotoxicity (Allium cepa assay) were studied and compared with pure Methyl Eugenol compound (ME). Results: Major components detected in the Essential Oil (EO) through Gas chromatography/mass spectroscopy analysis were methyl eugenol (73.17%) and β-myrcene (8.58%). A total of 35components were detected with a total identified area percentage of 98.34%. DPPH assay revealed considerable antioxidant activity of methyl eugenol rich lemongrass essential oil (IC50= 2.263 μg/mL), which is lower than standard ascorbic acid (IC50 2.58 μg/mL), and higher than standard Methyl Eugenol (ME) (IC50 2.253 μg/mL). Methyl eugenol rich lemongrass EO showed IC50 38.00 μg/mL, ME 36.44 μg/mL, and sodium diclofenac 22.76 μg/mL, in in-vitro anti-inflammatory test. Moderate antimicrobial activity towards the 8 tested microbes was shown by methyl eugenol rich lemongrass essential oil whose effectiveness against the microbes was less as compared to pure ME standard. Seed germination assay further revealed the herbicidal properties of methyl eugenol rich essential oil. Moreover, Allium cepa assay revealed moderate genotoxicity of the essential oil. Conclusion: This paper compared the antioxidant, anti-inflammatory, antimicrobial, genotoxicity and herbicidal activities of methyl eugenol rich lemongrass with pure methyl eugenol. This methyl eugenol rich lemongrass variety can be used as an alternative of methyl eugenol pure compound. Hence, the essential oil of this variety has the potential of developing cost-effective, easily available antioxidative/ antimicrobial drugs but its use should be under the safety range of methyl eugenol and needs further clinical trials.


2020 ◽  
Vol 10 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Vinay Bharadwaj Tatipamula ◽  
Girija Sastry Vedula

Background: Lichens which are betide to mangroves are termed as Manglicolous Lichens (ML). As these ML are habituated under stress conditions, they are screened for unique metabolites and biological activities. Objective: The study aimed to establish the chemical and biological profile of ML, Graphis ajarekarii. Methods: The Ethyl Acetate Extract of G. ajarekarii (EAE) was subjected to chromatographic techniques and the obtained isolates were characterized by spectroscopic analysis. The hydroalcoholic extract of G. ajarekarii (AE), EAE, isolates and Hydroalcoholic Extract of host (HE) were evaluated for fibrinolytic (fibrin clot method), in vitro (protein denaturation method) and in vivo (formalin-induced rat paw oedema assay), anti-inflammatory and cytotoxicity (MTT assay) activities. Results: Chemical investigation of the EAE led to the isolation of two known compounds namely atranorin (1) and ribenone (2), which were confirmed by spectral data. The AE and EAE gradually lysed the fibrin clot with 94.54 and 65.07%, respectively, at 24 h. The AE inhibited protein denaturation of about 88.06%, while the standard (Indomethacin) with 93.62%. Similarly, the in vivo antiinflammatory analysis of AE (200 mg/mL) showed potent reduction of rat paw oedema than the standard, whereas EAE and 1 depicted moderate depletion. In addition, the AE revealed prominence inhibition on MCF-7, DU145 and K-562 with IC50 values of 69.5, 42.5 and 38 µg/mL, respectively, whereas the HE exhibited mild inhibitory profile against fibrin clot, inflammation and cancer. Conclusion: From the results, it can be concluded that the G. ajarekarii has an aptitude to act against coagulation, inflammation and cancer cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 991
Author(s):  
Melanie S. Matos ◽  
José D. Anastácio ◽  
Cláudia Nunes dos Santos

Inflammation is a crucial and complex process that reestablishes the physiological state after a noxious stimulus. In pathological conditions the inflammatory state may persist, leading to chronic inflammation and causing tissue damage. Sesquiterpene lactones (SLs) are composed of a large and diverse group of highly bioactive plant secondary metabolites, characterized by a 15-carbon backbone structure. In recent years, the interest in SLs has risen due to their vast array of biological activities beneficial for human health. The anti-inflammatory potential of these compounds results from their ability to target and inhibit various key pro-inflammatory molecules enrolled in diverse inflammatory pathways, and prevent or reduce the inflammatory damage on tissues. Research on the anti-inflammatory mechanisms of SLs has thrived over the last years, and numerous compounds from diverse plants have been studied, using in silico, in vitro, and in vivo assays. Besides their anti-inflammatory potential, their cytotoxicity, structure–activity relationships, and pharmacokinetics have been investigated. This review aims to gather the most relevant results and insights concerning the anti-inflammatory potential of SL-rich extracts and pure SLs, focusing on their effects in different inflammatory pathways and on different molecular players.


Author(s):  
Yogita Chowdhary

Aegle marmelos (Bilva) is being used in Ayurveda for the treatment of several inflammatory disorders. The plant is a member of a fixed dose combination of Dashamoola in Ayurveda. However, the usage of roots/root bark or stems is associated with sustainability concerns. Bael (Aegle marmelos (L.) Corr.) is an important medicinal plant of India. Leaves, fruits, stem and roots of A. marmelos have been used in ethno medicine to exploit its' medicinal properties including astringent, antidiarrheal antidysenteric, demulcent, antipyretic and anti-inflammatory activities. Compounds purified from bael have been proven to be biologically active against several major diseases including cancer, diabetes and cardiovascular diseases. Preclinical studies indicate the therapeutic potential of crude extracts of A. marmelos in the treatment of many microbial diseases, diabetes and gastric ulcer. This review covers the biological activities of some isolated chemical constituents of A. marmelos and preclinical studies on some crude extracts and pure compounds to explore novel bioactive compounds for therapeutic application. Aegle marmelos (L.) is a seasonal fruit that contains significant amounts of bioactives like, phenolic acids (gallic acids, 2,3-dihydroxy benzoic acid, chlorogenic acid, p-coumaric acid, vanillic acid), flavonoid (rutin), organic acids (oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid, propionic acid, succinic acid, fumaric acid), vitamin C, vitamin B group (thiamine, niacin, pyridoxine, pantothenic acid, biotin, cobalamins, riboflavin), tocopherols (α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol), carotenes (α-carotene, β-carotene, γ-carotene, δ-carotene) and also rich in essential minerals (potassium, calcium, phosphorus, sodium, iron, copper, manganese). Hence the use of aegle plays important role as anti-inflammatory.


2017 ◽  
Vol 313 (4) ◽  
pp. L710-L721 ◽  
Author(s):  
Yunbo Ke ◽  
Olga V. Oskolkova ◽  
Nicolene Sarich ◽  
Yufeng Tian ◽  
Albert Sitikov ◽  
...  

Prostaglandins (PG), the products of cyclooxygenase-mediated conversion of arachidonic acid, become upregulated in many situations including allergic response, inflammation, and injury, and exhibit a variety of biological activities. Previous studies described barrier-enhancing and anti-inflammatory effects of PGE2 and PGI2 on vascular endothelial cells (EC). Yet, the effects of other PG members on EC barrier and inflammatory activation have not been systematically analyzed. This study compared effects of PGE2, PGI2, PGF2α, PGA2, PGJ2, and PGD2 on human pulmonary EC. EC permeability was assessed by measurements of transendothelial electrical resistance and cell monolayer permeability for FITC-labeled tracer. Anti-inflammatory effects of PGs were evaluated by analysis of expression of adhesion molecule ICAM1 and secretion of soluble ICAM1 and cytokines by EC. PGE2, PGI2, and PGA2 exhibited the most potent barrier-enhancing effects and most efficient attenuation of thrombin-induced EC permeability and contractile response, whereas PGI2 effectively suppressed thrombin-induced permeability but was less efficient in the attenuation of prolonged EC hyperpermeability caused by interleukin-6 or bacterial wall lipopolysaccharide, LPS. PGD2 showed a modest protective effect on the EC inflammatory response, whereas PGF2α and PGJ2 were without effect on agonist-induced EC barrier dysfunction. In vivo, PGE2, PGI2, and PGA2 attenuated LPS-induced lung inflammation, whereas PGF2α and PGJ2 were without effect. Interestingly, PGD2 exhibited a protective effect in the in vivo model of LPS-induced lung injury. This study provides a comprehensive analysis of barrier-protective and anti-inflammatory effects of different prostaglandins on lung EC in vitro and in vivo and identifies PGE2, PGI2, and PGA2 as prostaglandins with the most potent protective properties.


2017 ◽  
Vol 33 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Zulfa Nooreen ◽  
Anant Kumar ◽  
Dnyaneshwar Umrao Bawankule ◽  
Sudeep Tandon ◽  
Mohd Ali ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minh Giang Phan ◽  
Thi Thao Do ◽  
Thi Nga Nguyen ◽  
Thi Viet Huong Do ◽  
Ngoc Phuc Dong ◽  
...  

Eupatorium japonicum Thunb. of the plant family Asteraceae is a popular traditional herb in Vietnam. However, its chemical constituents as well as bioactive principles have not been investigated yet. We investigated the phytochemistry of E. japonicum in Vietnam and isolated seventeen compounds (1–17) including phytosterols, terpenoids, phenolic acids, flavonoids, fatty alcohols, and fatty acids. They were structurally determined by MS and NMR analysis. Except for compounds 6 and 12, all the other compounds were identified for the first time from E. japonicum. Since many sesquiterpene lactones with α-methylene γ-lactone ring are reported as anti-inflammatory and anticancer agents, eupatoriopicrin (10), 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide (11) were selected among the isolates for biological assays. Compound 10 was identified as the main bioactive sesquiterpene lactone of E. japonicum showing its potent anti-inflammatory and cytotoxic activity through inhibiting NO production and the growth of HepG2 and MCF-7 human cancer cell lines. For the first time, eupatoriopicrin (10) was demonstrated to strongly inhibit NTERA-2 human cancer stem cell (CSC) line in vitro. It is noticeable that the cytotoxicity of eupatoriopicrin against NTERA-2 cells is mediated by its apoptosis-inducing capability of 10 as demonstrated by the results of Hoechst 33342 staining, flow cytometry apoptosis analysis, and caspase-3 activity assays. The biological activities of the main bioactive constituents 1–7, 10, 12, and 15 supported the reported anti-inflammatory and anticancer properties of extracts from E. japonicum.


2019 ◽  
Author(s):  
Murugesh Kandasamy ◽  
Kit-Kay Mak ◽  
Thangaraj Devadoss ◽  
Punniyakoti Veeraveedu Thanikachalam ◽  
Raghavendra Sakirolla ◽  
...  

Abstract The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation provides cytoprotection against numerous inflammatory disorders. N-nicotinoylquinoxaline-2-carbohdyrazide (NQC) was designed by combining the important pharmacophoric features of bioactive compounds reported in the literature. NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using LPSEc induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using ELISA. The Nrf2 activity of the compound NQC was determined using ‘Keap1:Nrf2 Inhibitor Screening Assay Kit’. To obtain the insights on NQC’s activity on Nrf2, molecular docking studies were performed using Schrodinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes. NQC was found to be non-toxic until the dose of 50 µM on RAW 264.7 cells. The NQC showed potent anti-inflammatory effect in an in vitro model of Lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. The NQC dose-dependently down regulated the pro-inflammatory cytokines (Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values 13.27 ± 2.37, 10.13 ± 0.58, 14.41 ± 1.83 and 15.23 ± 0.91 µM respectively. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 59.78 ± 6.73, 52.93 ± 7.81, 28.43 ± 8.13 minutes; microsomal intrinsic clearance values; 22.1 ± 4.31, 26.0 ± 5.17 and 47.13 ± 6.34 µL/min/mg protein; respectively. So, rat has comparable metabolic profile with human, thus, rat could be used for predicting the pharmacokinetics and metabolism of NQC in human. NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.


2021 ◽  
Vol 11 ◽  
Author(s):  
Charina Worarat ◽  
Wilart Pompimon ◽  
Phansuang Udomputtimekakul ◽  
Sukee Sukdee ◽  
Punchavee Sombutsiri ◽  
...  

Background: Although the chemical constituents and biological activities of a large number of plants in the Croton genus have been studied, there are still recently discovered plants to be investigated. Objective: 1. To investigate the anti-bacterial, anti-HIV1-RT, and cytotoxicity activities of crude extracts from these plants. 2. To investigate the chemical constituents of Croton fluviatilis, Croton acutifolius, and Croton thorelii. Method: The anti-bacterial, anti-HIV1-RT, and cytotoxicity of the three plants were evaluated by standard techniques. Extraction, separation, and purification of extracts from the three plants were undertaken. Results: The ethyl acetate extract of C. fluviatilis showed low anti-bacterial activity against E. aerogenes, E. coli 0157: H7, and P. mirabilis, together with the ethyl acetate extract of C. acutifolius displayed low anti-bacterial activity against E. aerogenes, while all the crude extracts of C. thorelii were inactive. The ethyl acetate extracts of C. thorelii, and C. fluviatilis showed strong inhibited HIV1-RT, whereas the ethyl acetate extract of C. acutifolius, and the hexane extract of C. fluviatilis displayed moderate inhibited HIV1-RT. Cytotoxic properties of three Croton plants were specific to KKU-M213, MDA-MB-231, A-549, and MMNK-1. Especially, the ethyl acetate extract of C. acutifolius exhibited strong cytotoxic activities against MDA-MB-231, A-549, and MMNK-1. Furthermore, the ethyl acetate extract of C. thorelii showed high cytotoxic activities against KKU-M213, and MDA-MB-231. Compounds 1, and 4 were found in C. fluviatilis. Compounds 2 and 4 were also found in C. acutifolius. Moreover, compound 3 was only found in C. thorelii. Conclusion: The present study revealed that the three Croton species are good sources of flavonoid compounds and further investigation of the chemical constituents from these plants may prove to be fruitful to discover more active compounds to be tested as potential medicines.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1039
Author(s):  
Li-Ping Sun ◽  
Feng-Feng Shi ◽  
Wen-Wen Zhang ◽  
Zhi-Hao Zhang ◽  
Kai Wang

Safflower honey is a unique type of monofloral honey collected from the nectar of Carthamus tinctorius L. in the Apis mellifera colonies of northwestern China. Scant information is available regarding its chemical composition and biological activities. Here, for the first time, we investigated this honey’s chemical composition and evaluated its in vitro antioxidant and anti-inflammatory activities. Basic physicochemical parameters of the safflower honey samples in comparison to established quality standards suggested that safflower honeys presented a good level of quality. The in vitro antioxidant tests showed that extract from Carthamus tinctorius L. honey (ECH) effectively scavenged DPPH and ABTS+ free radicals. In lipopolysaccharides (LPS) activated murine macrophages inflammatory model, ECH treatment to the cells inhibited the release of nitric oxide and down-regulated the expressions of inflammatory-relating genes (iNOS, IL-1β, TNF-α and MCP-1). The expressions of the antioxidant genes TXNRD, HO-1, and NQO-1, were significantly boosted in a concentration-dependent manner. ECH decreased the phosphorylation of IκBα and inhibited the nuclear entry of the NF-κB-p65 protein, in LPS-stimulated Raw 264.7 cells, accompany with the increased expressions of Nrf-2 and HO-1, suggesting that ECH achieved the anti-inflammatory effects by inhibiting NF-κB signal transduction and boosting the antioxidant system via activating Nrf-2/HO-1 signaling. These results, taken together, indicated that safflower honey has great potential into developing as a high-quality agriproduct.


Sign in / Sign up

Export Citation Format

Share Document